This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259402 #8 May 13 2022 17:20:15 %S A259402 287,532,17145051,32963672,1106094475927,2126616990876, %T A259402 71358579001465427,137196568515066592,4603627364594444737551, %U A259402 8851099419054387781412,296998415728087428795555787,571019827783678204813603176,19160555787678205016722039960967 %N A259402 Pentagonal numbers (A000326) that are the sum of seven consecutive pentagonal numbers. %H A259402 Colin Barker, <a href="/A259402/b259402.txt">Table of n, a(n) for n = 1..416</a> %H A259402 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,64514,-64514,-1,1). %F A259402 G.f.: -7*x*(1968*x^4+1813*x^3-195857*x^2+35*x+41) / ((x-1)*(x^2-254*x+1)*(x^2+254*x+1)). %e A259402 287 is in the sequence because P(14) = 287 = 5+12+22+35+51+70+92 = P(2)+ ... +P(8). %t A259402 LinearRecurrence[{1,64514,-64514,-1,1},{287,532,17145051,32963672,1106094475927},20] (* _Harvey P. Dale_, May 13 2022 *) %o A259402 (PARI) Vec(-7*x*(1968*x^4+1813*x^3-195857*x^2+35*x+41)/((x-1)*(x^2-254*x+1)*(x^2+254*x+1)) + O(x^20)) %Y A259402 Cf. A000326, A133301, A257714, A257715, A259403, A259404. %K A259402 nonn,easy %O A259402 1,1 %A A259402 _Colin Barker_, Jun 26 2015