cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259404 Pentagonal numbers (A000326) that are the sum of twelve consecutive pentagonal numbers.

This page as a plain text file.
%I A259404 #7 Dec 17 2020 18:56:53
%S A259404 417912,9706632,3050311681782,70865417283102,22269721626195937752,
%T A259404 517374380230514907672,162586828187971503638961822,
%U A259404 3777247909935632832763236342,1187014240408376459988712771009992,27576939095353370682323270116205112
%N A259404 Pentagonal numbers (A000326) that are the sum of twelve consecutive pentagonal numbers.
%H A259404 Colin Barker, <a href="/A259404/b259404.txt">Table of n, a(n) for n = 1..290</a>
%H A259404 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,7300802,-7300802,-1,1).
%F A259404 G.f.: -6*x*(377*x^4+7980*x^3-131798379*x^2+1548120*x+69652) / ((x-1)*(x^2-2702*x+1)*(x^2+2702*x+1))
%e A259404 417912 is in the sequence because P(528) = 417912 = 32340 + 32782 + 33227 + 33675 + 34126 + 34580 + 35037 + 35497 + 35960 + 36426 + 36895 + 37367 = P(147)+ ... +P(158).
%t A259404 Select[Total/@Partition[PolygonalNumber[5,Range[5*10^6]],12,1],IntegerQ[ (1+Sqrt[ 1+24#])/6]&] (* The program generates the first four terms of the sequence. To generate more, increase the Range constant but the program will take a long time to run. *) (* _Harvey P. Dale_, Dec 17 2020 *)
%o A259404 (PARI) Vec(-6*x*(377*x^4+7980*x^3-131798379*x^2+1548120*x+69652) / ((x-1)*(x^2-2702*x+1)*(x^2+2702*x+1)) + O(x^20))
%Y A259404 Cf. A000326, A133301, A257714, A257715, A259402, A259403.
%K A259404 nonn,easy
%O A259404 1,1
%A A259404 _Colin Barker_, Jun 26 2015