cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259405 Decimal expansion of a constant related to A259373.

This page as a plain text file.
%I A259405 #10 Jun 26 2015 16:15:58
%S A259405 9,0,8,6,6,1,6,6,7,6,4,4,4,5,4,8,9,2,5,6,6,5,8,1,1,3,7,7,0,2,1,5,9,2,
%T A259405 7,8,1,3,6,9,4,2,2,1,3,7,2,7,3,7,0,6,6,6,5,1,1,2,3,4,2,8,3,3,9,7,2,2,
%U A259405 6,8,6,5,0,1,5,4,3,7,0,7,5,9,1,8,2,4,8,8,2,1,6,8,5,7,2,6,5
%N A259405 Decimal expansion of a constant related to A259373.
%F A259405 Equals limit n->infinity Product_{k=1..n} p(k)^k / (exp(Pi*sqrt(2/3*(k-1/24))) / (4*sqrt(3)*(k-1/24)) * (1 - sqrt(3/(2*(k-1/24)))/Pi))^k, where p(k) is the partition function A000041.
%e A259405 0.908661667644454892566581137702159278136942213727370666511234283397226865...
%t A259405 (* The iteration cycle: *) Do[Print[Product[N[PartitionsP[k]^k/((E^(Sqrt[2/3]*Sqrt[k-1/24]*Pi) * (1 - Sqrt[3/2]/(Sqrt[k-1/24]*Pi))) / (4*Sqrt[3]*(k-1/24)))^k, 150], {k, 1, n}]], {n, 1000, 50000, 1000}]
%Y A259405 Cf. A000041, A259373, A058694, A259314, A133018.
%K A259405 nonn,cons
%O A259405 0,1
%A A259405 _Vaclav Kotesovec_, Jun 26 2015