cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259406 Numbers of the form i^j * j^k * k^i, where i,j,k > 1.

This page as a plain text file.
%I A259406 #16 Jun 28 2015 14:33:15
%S A259406 64,288,1024,1944,3200,9216,10368,19683,25088,36000,48600,65536,
%T A259406 124416,139968,165888,209952,320000,395136,409600,820125,857304,
%U A259406 991232,1179648,1327104,2359296,2500000,3359232,4251528,4917248,5537792,9216000,9720000,10368000,12441600,12754584,12845056
%N A259406 Numbers of the form i^j * j^k * k^i, where i,j,k > 1.
%H A259406 Charles R Greathouse IV, <a href="/A259406/b259406.txt">Table of n, a(n) for n = 1..10000</a>
%e A259406 i=2,j=2,k=2: 2^2 * 2^2 * 2^2 = 64
%e A259406 i=2,j=2,k=3: 2^2 * 2^3 * 3^2 = 288
%e A259406 i=2,j=2,k=4: 2^2 * 2^4 * 4^2 = 1024
%o A259406 (PARI) list(lim)=my(v=List(),m=2*lambertw(sqrt(lim)*log(2)/4)\log(2),t); for(i=2,m,for(j=i,m,if(i^j*j^i*i^i>lim,break);for(k=i,m,t=i^j*j^k*k^i; if(t>lim,break); listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Jun 28 2015
%Y A259406 The form of this sequence is similar to A146748.
%K A259406 nonn
%O A259406 1,1
%A A259406 _Marko Hermsen_, Jun 26 2015