cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259417 Even powers of the odd primes listed in increasing order.

This page as a plain text file.
%I A259417 #21 Jul 10 2022 03:56:13
%S A259417 1,9,25,49,81,121,169,289,361,529,625,729,841,961,1369,1681,1849,2209,
%T A259417 2401,2809,3481,3721,4489,5041,5329,6241,6561,6889,7921,9409,10201,
%U A259417 10609,11449,11881,12769,14641,15625,16129,17161,18769,19321,22201,22801,24649
%N A259417 Even powers of the odd primes listed in increasing order.
%C A259417 Each of the following sequences, p^(q-1) with p >= 2 and q > 2 primes, except their respective first elements, powers of 2, is a subsequence:
%C A259417 A001248(p) = p^2,  A030514(p) = p^4,  A030516(p) = p^6,
%C A259417 A030629(p) = p^10, A030631(p) = p^12, A030635(p) = p^16,
%C A259417 A030637(p) = p^18, A137486(p) = p^22, A137492(p) = p^28,
%C A259417 A139571(p) = p^30, A139572(p) = p^36, A139573(p) = p^40,
%C A259417 A139574(p) = p^42, A139575(p) = p^46, A173533(p) = p^52,
%C A259417 A183062(p) = p^58, A183085(p) = p^60.
%C A259417 See also the link to the OEIS Wiki.
%C A259417 The sequences A053182(n)^2, A065509(n)^4, A163268(n)^6 and A240693(n)^10 are subsequences of this sequence.
%C A259417 The odd numbers in A023194 are a subsequence of this sequence.
%H A259417 Hartmut F. W. Hoft, <a href="/A259417/b259417.txt">Table of n, a(n) for n = 1..473</a>
%H A259417 <a href="https://oeis.org/wiki/Index_entries_for_number_of_divisors">OEIS Wiki, Index entries for number of divisors</a>.
%F A259417 Sum_{n>=1} 1/a(n) = 1 + Sum_{k>=1} (P(2*k) - 1/2^(2*k)) = 1.21835996432366585110..., where P is the prime zeta function. - _Amiram Eldar_, Jul 10 2022
%e A259417 a(11) = 5^4 = 625 is followed by a(12) = 3^6 = 729 since no even power of an odd prime falls between them.
%t A259417 a259417[bound_] := Module[{q, h, column = {}}, For[q = Prime[2], q^2 <= bound, q = NextPrime[q], For[h = 1, q^(2*h) <= bound, h++, AppendTo[column, q^(2*h)]]]; Prepend[Sort[column], 1]]
%t A259417 a259417[25000] (* data *)
%t A259417 With[{upto=25000},Select[Union[Flatten[Table[Prime[Range[2,Floor[ Sqrt[ upto]]]]^n,{n,0,Log[2,upto],2}]]],#<=upto&]] (* _Harvey P. Dale_, Nov 25 2017 *)
%K A259417 nonn
%O A259417 1,2
%A A259417 _Hartmut F. W. Hoft_, Jun 26 2015