cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259418 Primes p such that p plus the cube of sum of digits of p is a perfect square.

This page as a plain text file.
%I A259418 #12 Sep 08 2022 08:46:13
%S A259418 17,131,863,1031,1481,3011,3449,3881,3923,5903,16649,17921,22643,
%T A259418 26249,26687,30113,30809,33629,48473,56009,58049,60623,70163,71933,
%U A259418 75521,94109,109331,129209,134129,155387,179909,193601,194003,195401,219647,239807,258233,263411
%N A259418 Primes p such that p plus the cube of sum of digits of p is a perfect square.
%C A259418 All the terms are congruent to 2 (mod 3).
%H A259418 K. D. Bajpai, <a href="/A259418/b259418.txt">Table of n, a(n) for n = 1..2610</a>
%e A259418 a(2) = 131 is prime: 131 + (1 + 3 + 1)^3 = 256 = 16^2.
%e A259418 a(3) = 863 is prime: 863 + (8 + 6 + 3)^3 = 5776 = 76^2.
%t A259418 Select[Prime[Range[100000]], IntegerQ[Sqrt[# + Plus @@ (IntegerDigits[#])^3]] &]
%o A259418 (PARI) forprime(p=1, 10^6, if(issquare(sumdigits(p)^3 + p), print1(p, ", ")))
%o A259418 (Magma) [p: p in PrimesUpTo(2*10^6) |  IsSquare(&+Intseq(p)^3 + p)] ;
%Y A259418 Cf. A052034, A061309, A091365, A091366.
%K A259418 nonn,base
%O A259418 1,1
%A A259418 _K. D. Bajpai_, Jun 26 2015