cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259421 Number of (n+1) X (2+1) 0..1 arrays with each 2 X 2 subblock having clockwise pattern 0000 0001 0011 or 0111.

Original entry on oeis.org

43, 243, 1366, 7695, 43347, 244228, 1376077, 7753553, 43687910, 246163281, 1387029593, 7815349472, 44036333771, 248126951851, 1398095180302, 7877701886559, 44387669863035, 250106600625676, 1409249728938893
Offset: 1

Views

Author

R. H. Hardin, Jun 26 2015

Keywords

Examples

			Some solutions for n=4:
..1..1..0....1..0..0....1..0..0....0..0..1....1..1..1....1..1..0....1..0..1
..0..1..0....0..0..0....0..0..0....0..0..1....0..1..0....0..1..1....1..0..1
..1..1..0....1..1..0....1..1..1....1..0..0....0..0..0....0..0..1....0..0..1
..0..1..0....0..1..0....0..0..1....1..1..0....0..0..0....1..1..1....0..0..0
..0..1..0....0..1..0....1..1..1....0..1..1....0..1..1....0..0..1....0..1..1
		

Crossrefs

Column 2 of A259427.

Formula

Empirical: a(n) = 6*a(n-1) + 2*a(n-2) - 22*a(n-3) - 6*a(n-4) + 6*a(n-5) + a(n-6).
Empirical g.f.: x*(43 - 15*x - 178*x^2 - 41*x^3 + 49*x^4 + 8*x^5) / (1 - 6*x - 2*x^2 + 22*x^3 + 6*x^4 - 6*x^5 - x^6). - Colin Barker, Dec 25 2018