cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259438 a(n) = Sum_{k=0..n} p(k)^(n-k), where p(k) is the partition function A000041.

This page as a plain text file.
%I A259438 #10 Oct 09 2018 15:14:11
%S A259438 1,2,3,5,10,25,78,301,1414,7964,53408,426116,4028890,44697755,
%T A259438 576491980,8617031811,149425700853,3004591733938,69763130950599,
%U A259438 1860330686377532,56746090401472922,1975156902590115291,78299783319570477185,3529323014512112469681
%N A259438 a(n) = Sum_{k=0..n} p(k)^(n-k), where p(k) is the partition function A000041.
%C A259438 The position of the maximum value asymptotically approaches k = n/3.
%F A259438 log(a(n)) ~ 2^(3/2)*Pi*n^(3/2)/9 - n*log(16*n^2/3)/3.
%F A259438 G.f.: Sum_{k>=0} x^k/(1 - p(k)*x). - _Ilya Gutkovskiy_, Oct 09 2018
%t A259438 Table[Sum[PartitionsP[k]^(n-k),{k,0,n}],{n,0,25}]
%Y A259438 Cf. A000041, A133018, A259399, A259436, A259437.
%K A259438 nonn
%O A259438 0,2
%A A259438 _Vaclav Kotesovec_, Jun 27 2015