cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259456 Triangle read by rows, giving coefficients in an expansion of absolute values of Stirling numbers of the first kind in terms of binomial coefficients.

This page as a plain text file.
%I A259456 #44 Aug 05 2025 14:39:48
%S A259456 1,2,3,6,20,15,24,130,210,105,120,924,2380,2520,945,720,7308,26432,
%T A259456 44100,34650,10395,5040,64224,303660,705320,866250,540540,135135,
%U A259456 40320,623376,3678840,11098780,18858840,18288270,9459450,2027025,362880,6636960,47324376,177331440,389449060,520059540,416215800
%N A259456 Triangle read by rows, giving coefficients in an expansion of absolute values of Stirling numbers of the first kind in terms of binomial coefficients.
%D A259456 L. Comtet, Advanced Combinatorics (1974), Chapter VI, page 256.
%D A259456 DJ Jeffrey, GA Kalugin, N Murdoch, Lagrange inversion and Lambert W, Preprint 2015; http://www.apmaths.uwo.ca/~djeffrey/Offprints/JeffreySYNASC2015paper17.pdf
%D A259456 Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 152. Table C_{m, nu}.
%H A259456 Lothar Berg, <a href="http://ftp.math.uni-rostock.de/pub/romako/pdf_romako/Rahmen56.pdf#page=55">On polynomials related with generalized Bernoulli numbers</a>, Rostock Math. Kolloq. (2002).
%H A259456 Steve Butler and Pavel Karasik, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Butler/butler7.html">A note on nested sums</a>, J. Int. Seq. 13 (2010) #10.4.4 page 4.
%H A259456 Tom Copeland, <a href="http://tcjpn.wordpress.com/2015/12/21/generators-inversion-and-matrix-binomial-and-integral-transforms/">Generators, Inversion, and Matrix, Binomial, and Integral Transforms</a>
%H A259456 Bishal Deb and Alan D. Sokal, <a href="https://arxiv.org/abs/2507.18959">Higher-order Stirling cycle and subset triangles: Total positivity, continued fractions and real-rootedness</a>, arXiv:2507.18959 [math.CO], 2025. See p. 6.
%H A259456 Donald E. Knuth, <a href="http://www.mathematica-journal.com/issue/v2i4/article/knuth/index.html">Convolution polynomials</a>, The Mathematica J., 2 (1992), 67-78.
%H A259456 Donald E. Knuth, <a href="http://arxiv.org/abs/math/9207221">Convolution polynomials</a>, arXiv:math/9207221 [math.CA], 1992.
%H A259456 Richard B. Paris, <a href="http://dx.doi.org/10.1016/j.cam.2006.11.017">An asymptotic approximation for incomplete Gaussian sums. II.</a>, J. Comp. Appl. Math 212 (2008) 16-30, Table 1.
%H A259456 Grzegorz Rzadkowski, <a href="http://arxiv.org/abs/1007.1955">On some expansions for the Euler Gamma function and the Riemann Zeta function</a>, arxiv:1007.1955 [math.CA], Table 1. J. Comp. Appl. Math. 236 (15) (2012), 3710-3719.
%H A259456 Lajos Takács, <a href="http://dx.doi.org/10.1137/0403050">On the number of distinct forests</a>, SIAM J. Discrete Math., 3 (1990), 574-581. Table 3 gives a version of the triangle.
%F A259456 T(n,k) = (n-k-1)*( T(n-1,k-1)+T(n-1,k) ), n>=1, 1<=k<=n. [Berg, Eq. 6]
%F A259456 The general results on the convolution of the refined partition polynomials of A133932, with u_1 = 1 and u_n = -t otherwise, can be applied here to obtain results of convolutions of these unsigned polynomials. - _Tom Copeland_, Sep 20 2016
%e A259456 Triangle begins:
%e A259456 1,
%e A259456 2,3,
%e A259456 6,20,15,
%e A259456 24,130,210,105,
%e A259456 120,924,2380,2520,945,
%e A259456 ...
%e A259456 For k=4 and j=2 in Knuth's equation, |S1(4,4-2)| = |S1(4,2)| = |A008275(4,2)| = 11 = p_{2,1}*C(4,3) +p_{2,2}*C(4,4) = 2*4+3*1. - _R. J. Mathar_, Jul 16 2015
%p A259456 A259456 := proc(n,k)
%p A259456     option remember;
%p A259456     if k < 1 or k > n  then
%p A259456         0 ;
%p A259456     elif n = 1 then
%p A259456         1;
%p A259456     else
%p A259456         procname(n-1,k-1)+procname(n-1,k);
%p A259456         %*(n+k-1) ;
%p A259456     end if;
%p A259456 end proc:
%p A259456 seq(seq(A259456(n,k),k=1..n),n=1..10) ; # _R. J. Mathar_, Jul 18 2015
%t A259456 T[n_, k_] := T[n, k] = If[k < 1 || k > n, 0, If[n == 1, 1, (T[n-1, k-1] + T[n-1, k])(n+k-1)]];
%t A259456 Table[T[n, k], {n, 1, 10}, { k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 26 2019, from Maple *)
%Y A259456 Cf. This is a row reversed and unsigned version of A111999.
%Y A259456 Cf. A008275, A000276 (2nd column), A000483 (3rd column), A000142 (1st column).
%Y A259456 Cf. A133932.
%K A259456 nonn,tabl,easy
%O A259456 0,2
%A A259456 _N. J. A. Sloane_, Jun 30 2015