This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259457 #13 Dec 07 2024 07:56:01 %S A259457 3,66,1050,15300,220500,3245760,49533120,789264000,13172544000, %T A259457 230519520000,4229703878400,81315551116800,1636227552960000, %U A259457 34417989365760000,755835784704000000,17305616126582784000,412559358036553728000,10227311816872550400000,263309943217447526400000,7032029553158658048000000 %N A259457 From higher-order arithmetic progressions. %H A259457 Karl Dienger, <a href="/A000217/a000217.pdf">Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung</a>, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy] %F A259457 Conjecture: 3*n*a(n) +(-3*n^2-19*n-44)*a(n-1) -2*(n+2)^2*a(n-2)=0. - _R. J. Mathar_, Jul 15 2015 %F A259457 From _Georg Fischer_, Dec 06 2024: (Start) %F A259457 a(n) = (n+3)!*(n+2)*(n+1)*(n+3)*(3*n+8)/96. %F A259457 D-finite with recurrence: -n*(3*n+5)*a(n) + (n+3)^2*(3*n+8)*a(n-1) = 0. (End) %p A259457 rX := proc(n, a, d) %p A259457 n*a+(n-1)*n/2*d; %p A259457 end proc: %p A259457 A259457 := proc(n) %p A259457 mul(rX(i, a, d), i=1..n+2) ; %p A259457 coeftayl(%, d=0, 2) ; %p A259457 coeftayl(%, a=0, n) ; %p A259457 end proc: %p A259457 seq(A259457(n), n=1..25) ; # _R. J. Mathar_, Jul 15 2015 %t A259457 rX[n_, a_, d_] := n*a + (n-1)*n/2*d; %t A259457 A259457[n_] := %t A259457 Product[rX[i, a, d], {i, 1, n+3}]// %t A259457 SeriesCoefficient[#, {d, 0, 2}]&// %t A259457 SeriesCoefficient[#, {a, 0, n+1}]&; %t A259457 Table[A259457[n], {n, 0, 17}] (* _Jean-François Alcover_, Apr 27 2023, after _R. J. Mathar_ *) %Y A259457 Cf. A000914, A259248. %K A259457 nonn %O A259457 0,1 %A A259457 _N. J. A. Sloane_, Jun 30 2015