A259458 From higher-order arithmetic progressions.
18, 750, 20250, 463050, 9878400, 205752960, 4286520000, 90561240000, 1956122784000, 43410118752000, 992644715462400, 23427803599200000, 571192163942400000, 14391113340764160000, 374682915193466880000, 10078235746321526784000, 279950992953375744000000, 8026706333564126208000000
Offset: 0
Keywords
Links
- Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
Programs
-
Maple
rX := proc(n, a, d) n*a+(n-1)*n/2*d; end proc: A259458 := proc(n) mul(rX(i, a, d), i=1..n+3) ; coeftayl(%, d=0, 3) ; coeftayl(%, a=0, n) ; end proc: seq(A259458(n), n=1..25) ; # R. J. Mathar, Jul 15 2015
-
Mathematica
rX[n_, a_, d_] := n*a + (n-1)*n/2*d; A259458[n_] := Product[rX[i, a, d], {i, 1, n+4}] // SeriesCoefficient[#, {d, 0, 3}]& // SeriesCoefficient[#, {a, 0, n+1}]&; Table[A259458[n], {n, 0, 16}] (* Jean-François Alcover, Apr 27 2023, after R. J. Mathar *)
Formula
D-finite with recurrence: -n*(n+2)*a(n) +(n+4)^3*a(n-1)=0. - R. J. Mathar, Jul 15 2015
Conjectured g.f.: 18*3F1(5,5,5;3;x). - R. J. Mathar, Aug 09 2015
a(n) = (n+4)!*(n+1)*(n+2)*(n+3)^2*(n+4)^2/384. - Georg Fischer, Dec 06 2024
Comments