A259459 From higher-order arithmetic progressions.
1, 18, 360, 9000, 283500, 11113200, 533433600, 30862944000, 2121827400000, 171160743600000, 16020645600960000, 1722947613266880000, 211061082625192800000, 29223842209642080000000, 4542220046298654720000000, 787620956028186728448000000
Offset: 0
Keywords
Links
- Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
Programs
-
Maple
rV := proc(n,a,d) n*(n+1)/2*a+(n-1)*n*(n+1)/6*d; end proc: A259459 := proc(n) mul(rV(i,a,d),i=1..n+1) ; coeftayl(%,d=0,1) ; coeftayl(%,a=0,n) ; end proc: seq(A259459(n),n=1..15) ; # R. J. Mathar, Jul 14 2015
-
Mathematica
rV[n_, a_, d_] := n(n+1)/2*a + (n-1)n(n+1)/6*d; A259459[n_] := Product[rV[i, a, d], {i, 1, n+2}] // SeriesCoefficient[#, {d, 0, 1}]& // SeriesCoefficient[#, {a, 0, n+1}]&; Table[A259459[n], {n, 0, 14}] (* Jean-François Alcover, Apr 27 2023, after R. J. Mathar *)
Formula
-2*n*a(n) +(n+3)*(n+2)^2*a(n-1)=0. - R. J. Mathar, Jul 15 2015
Conjectured g.f.: 3F0(4,3,3;;x/2). - R. J. Mathar, Aug 09 2015
a(n) = (n+3)!*(n+2)!/2^(n+2)*(n+1)*(n+2)/6. - Georg Fischer, Dec 06 2024
Comments