cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259459 From higher-order arithmetic progressions.

Original entry on oeis.org

1, 18, 360, 9000, 283500, 11113200, 533433600, 30862944000, 2121827400000, 171160743600000, 16020645600960000, 1722947613266880000, 211061082625192800000, 29223842209642080000000, 4542220046298654720000000, 787620956028186728448000000
Offset: 0

Views

Author

N. J. A. Sloane, Jun 30 2015

Keywords

Comments

The expression "2 over n!" in the article is A006472(n+1). It is used in A259459 - A378234 (C_1 - C_3) on page 13. - Georg Fischer, Dec 06 2024

Crossrefs

Programs

  • Maple
    rV := proc(n,a,d)
            n*(n+1)/2*a+(n-1)*n*(n+1)/6*d;
    end proc:
    A259459 := proc(n)
            mul(rV(i,a,d),i=1..n+1) ;
            coeftayl(%,d=0,1) ;
            coeftayl(%,a=0,n) ;
    end proc:
    seq(A259459(n),n=1..15) ; # R. J. Mathar, Jul 14 2015
  • Mathematica
    rV[n_, a_, d_] := n(n+1)/2*a + (n-1)n(n+1)/6*d;
    A259459[n_] :=
       Product[rV[i, a, d], {i, 1, n+2}] //
       SeriesCoefficient[#, {d, 0, 1}]& //
       SeriesCoefficient[#, {a, 0, n+1}]&;
    Table[A259459[n], {n, 0, 14}] (* Jean-François Alcover, Apr 27 2023, after R. J. Mathar *)

Formula

-2*n*a(n) +(n+3)*(n+2)^2*a(n-1)=0. - R. J. Mathar, Jul 15 2015
Conjectured g.f.: 3F0(4,3,3;;x/2). - R. J. Mathar, Aug 09 2015
a(n) = (n+3)!*(n+2)!/2^(n+2)*(n+1)*(n+2)/6. - Georg Fischer, Dec 06 2024

A378234 From higher-order arithmetic progressions: Corrected version of A259461.

Original entry on oeis.org

40, 5000, 472500, 43218000, 4148928000, 432081216000, 49509306000000, 6275893932000000, 881135508052800000, 136878615942868800000, 23474682634201999200000, 4432282735129048800000000, 918537831584839065600000000, 208281986149676045967360000000, 51516317681413623440962560000000
Offset: 0

Views

Author

Georg Fischer, Dec 16 2024

Keywords

Comments

Only the first 5 terms of A259461 are correct. - R. J. Mathar, Jul 14 2015
"2 over n!" on page 13 in the Dienger article is A006472; A_3 is A001303.

Crossrefs

Programs

  • Maple
    rV := proc(n,a,d)
        n*(n+1)/2*a+(n-1)*n*(n+1)/6*d;
    end proc:
    A259461 := proc(n)
        mul(rV(i,a,d),i=1..n+3) ;
        coeftayl(%,d=0,3) ;
        coeftayl(%,a=0,n) ;
    end proc:
    seq(A259461(n),n=1..5) ; # R. J. Mathar, Jul 14 2015

Formula

D-finite with recurrence: -2*n*(n+2)*a(n) + (n+4)^3*(n+5)*a(n-1) = 0.
a(n) = (n+5)!*(n+4)!^3 / (1296*2^(n+4)*n!^2*(n+2)*(n+1)).
Showing 1-2 of 2 results.