cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259462 From higher-order arithmetic progressions.

Original entry on oeis.org

1, 30, 1200, 70000, 5880000, 691488000, 110638080000, 23471078400000, 6454546560000000, 2256222608640000000, 985518035453952000000, 529939925428193280000000, 346227417946419609600000000, 271655358696421539840000000000, 253338025938605687439360000000000, 278215820085776765945905152000000000, 356811789260008702325623357440000000000
Offset: 0

Views

Author

N. J. A. Sloane, Jun 30 2015

Keywords

Comments

"3 over n!" in Dienger's article is A087047. A_1 is A000217. - Georg Fischer, Dec 16 2024

Crossrefs

Programs

  • Maple
    rXI := proc(n, a, d)
            n*(n+1)*(n+2)/6*a+(n+2)*(n+1)*n*(n-1)/24*d;
    end proc:
    A259462 := proc(n)
            mul(rXI(i, a, d), i=1..n+1) ;
            coeftayl(%, d=0, 1) ;
            coeftayl(%, a=0, n) ;
    end proc:
    seq(A259462(n), n=1..25) ; # R. J. Mathar, Jul 15 2015
  • Mathematica
    rXI[n_, a_, d_] := n(n+1)(n+2)/6*a + (n+2)(n+1)n(n-1)/24*d;
    A259462[n_] :=
       Product[rXI[i, a, d], {i, 1, n + 2}] //
       SeriesCoefficient[#, {d, 0, 1}] & //
       SeriesCoefficient[#, {a, 0, n + 1}] & ;
    Table[A259462[n], {n, 0, 14}] (* Jean-François Alcover, Apr 27 2023, after R. J. Mathar *)

Formula

D-finite with recurrence: -6*n*a(n) +(n+4)*(n+3)*(n+2)^2*a(n-1)=0. - R. J. Mathar, Jul 15 2015
a(n) = 2^(-n-3)*3^(-n-2)*(n+2)!*(n+3)!*(n+4)!/4*(n+2)*(n+1)/2. - Georg Fischer, Dec 16 2024

A259464 From higher-order arithmetic progressions.

Original entry on oeis.org

75, 21875, 5512500, 1512630000, 484041600000, 184834742400000, 84715923600000000, 46534591303200000000, 30489464221856640000000, 23681690417572387200000000, 21660852835272876825600000000, 23175597788788462617600000000000, 28817200450516396946227200000000000
Offset: 0

Views

Author

N. J. A. Sloane, Jun 30 2015

Keywords

Comments

"3 over n!" on page 15 in the Dienger article is A087047; A_3 is A001303. - Georg Fischer, Dec 16 2024

Crossrefs

Programs

  • Maple
    rXI := proc(n, a, d)
            n*(n+1)*(n+2)/6*a+(n+2)*(n+1)*n*(n-1)/24*d;
    end proc:
    A259464 := proc(n)
            mul(rXI(i, a, d), i=1..n+3) ;
            coeftayl(%, d=0, 3) ;
            coeftayl(%, a=0, n) ;
    end proc:
    seq(A259464(n), n=1..25) ; # R. J. Mathar, Jul 15 2015
  • Mathematica
    rXI[n_, a_, d_] := (n(n+1)(n+2)/6)*a+((n+2)(n+1)n(n-1)/24)*d;
    A259464[n_] :=
       Product[rXI[i, a, d], {i, 1, n+4}]//
       SeriesCoefficient[#, {d, 0, 3}]&//
       SeriesCoefficient[#, {a, 0, n+1}]&;
    Table[A259464[n], {n, 0, 12}] (* Jean-François Alcover, Apr 26 2023, after R. J. Mathar *)

Formula

D-finite with recurrence: -6*n*(n+2)*a(n) +(n+6)*(n+5)*(n+4)^3*a(n-1)=0. - R. J. Mathar, Jul 15 2015
a(n) = 2^(-n-5)*3^(-n-4)*(n+4)!*(n+5)!*(n+6)!*(n+4)^2*(n+3)^2*(n+2)*(n+1)/3072. - Georg Fischer, Dec 16 2024
Showing 1-2 of 2 results.