This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259465 #38 Jul 09 2025 04:39:55 %S A259465 1,1,1,1,1,8,1,1,43,43,1,1,194,826,194,1,1,803,11284,11284,803,1,1, %T A259465 3184,127905,392244,127905,3184,1,1,12367,1297629,10258067,10258067, %U A259465 1297629,12367,1,1,47606,12295720,224702858,561134638,224702858,12295720,47606,1 %N A259465 Triangle read by rows: enumerates pairs of amicable permutations by rises. %H A259465 Alois P. Heinz, <a href="/A259465/b259465.txt">Rows n = 0..80, flattened</a> %H A259465 Carlitz, L., Richard Scoville, and Theresa Vaughan, <a href="/A259465/a259465.pdf">Enumeration of pairs of permutations and sequences</a>, Bulletin of the American Mathematical Society 80.5 (1974): 881-884. [Annotated scanned copy] %H A259465 L. Carlitz, N. J. A. Sloane, and C. L. Mallows, <a href="/A259465/a259465_1.pdf">Correspondence, 1975</a> %e A259465 Triangle begins: %e A259465 1; %e A259465 1; %e A259465 1, 1; %e A259465 1, 8, 1; %e A259465 1, 43, 43, 1; %e A259465 1, 194, 826, 194, 1; %e A259465 1, 803, 11284, 11284, 803, 1; %e A259465 1, 3184, 127905, 392244, 127905, 3184, 1; %e A259465 1, 12367, 1297629, 10258067, 10258067, 1297629, 12367, 1; %e A259465 ... %p A259465 b:= proc(u, o, h) option remember; `if`(u+o=0, 1, expand( %p A259465 add(add(b(u-j, o+j-1, h+i-1), i=1..u+o-h)*x, j=1..u)+ %p A259465 add(add(b(u+j-1, o-j, h-i), i=1..h), j=1..o))) %p A259465 end: %p A259465 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(0, n$2)): %p A259465 seq(T(n), n=0..10); # _Alois P. Heinz_, Jul 02 2015 %t A259465 b[u_, o_, h_] := b[u, o, h] = If[u+o == 0, 1, Expand[Sum[Sum[b[u-j, o+j-1, h+i-1], {i, 1, u+o-h}]*x, {j, 1, u}] + Sum[Sum[b[u+j-1, o-j, h-i], {i, 1, h}], {j, 1, o}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[0, n, n]]; Table[T[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Feb 12 2016, after _Alois P. Heinz_ *) %Y A259465 Row sums give A060350. %K A259465 nonn,tabf %O A259465 0,6 %A A259465 _N. J. A. Sloane_, Jun 30 2015, following a suggestion from L. Carlitz, Nov 30 1975 %E A259465 More terms from _Alois P. Heinz_, Jul 02 2015