This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259475 #49 Sep 03 2025 15:32:29 %S A259475 1,1,0,1,1,0,1,2,1,0,1,3,4,1,0,1,4,8,8,1,0,1,5,13,21,16,1,0,1,6,19,40, %T A259475 55,32,1,0,1,7,26,66,121,144,64,1,0,1,8,34,100,221,364,377,128,1,0,1, %U A259475 9,43,143,364,728,1093,987,256,1,0,1,10,53,196,560,1288,2380,3280,2584,512,1,0 %N A259475 Array read by antidiagonals: row n gives coefficients of Taylor series expansion of 1/F_{n+1}(t), where F_i(t) is a Fibonacci polynomial defined by F_0=1, F_1=1, F_{i+1} = F_i-t*F_{i-1}. %H A259475 Alois P. Heinz, <a href="/A259475/b259475.txt">Antidiagonals n = 0..140, flattened</a> %H A259475 Noureddine Chair, <a href="https://arxiv.org/pdf/hep-th/9808170">Explicit Computations for the Intersection Numbers on Grassmannians, and on the Space of Holomorphic Maps from CP¹ into G<sub>r</sub>(C<sup>n</sup>)</a>, arXiv:hep-th/9808170, 1998. (Cf. Table 4). %H A259475 G. Kreweras, <a href="http://www.numdam.org/item?id=BURO_1970__15__3_0">Sur les éventails de segments</a>, Cahiers du Bureau Universitaire de Recherche Opérationelle, Cahier no. 15, Paris, 1970, pp. 3-41. %H A259475 G. Kreweras, <a href="/A000108/a000108_1.pdf">Sur les éventails de segments</a>, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41. [Annotated scanned copy] %H A259475 Genki Shibukawa, <a href="https://arxiv.org/abs/1907.00334">New identities for some symmetric polynomials and their applications</a>, arXiv:1907.00334 [math.CA], 2019. %F A259475 Let F(n, k) = Sum_{j=0..(n-2)/2} (-1)^j*binomial(n-1-j, j+1)*F(n, k-2-2*j) for k > 0; F(n, 0) = 1 and F(n, k) = 0 if k < 0. Then A(n, k) = F(n+1, 2*k). See [Shibukawa] and A309896. - _Peter Luschny_, Aug 21 2019 %e A259475 The first few antidiagonals are: %e A259475 1; %e A259475 1, 0; %e A259475 1, 1, 0; %e A259475 1, 2, 1, 0; %e A259475 1, 3, 4, 1, 0; %e A259475 1, 4, 8, 8, 1, 0; %e A259475 1, 5, 13, 21, 16, 1, 0; %e A259475 1, 6, 19, 40, 55, 32, 1, 0; %e A259475 1, 7, 26, 66, 121, 144, 64, 1, 0; %e A259475 ... %e A259475 Square array starts: %e A259475 [0] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A259475 [1] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A259475 [2] 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ... %e A259475 [3] 1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, 17711, ... %e A259475 [4] 1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573, ... %e A259475 [5] 1, 5, 19, 66, 221, 728, 2380, 7753, 25213, 81927, 266110, ... %e A259475 [6] 1, 6, 26, 100, 364, 1288, 4488, 15504, 53296, 182688, 625184, ... %e A259475 [7] 1, 7, 34, 143, 560, 2108, 7752, 28101, 100947, 360526, 1282735, ... %e A259475 [8] 1, 8, 43, 196, 820, 3264, 12597, 47652, 177859, 657800, 2417416, ... %e A259475 [9] 1, 9, 53, 260, 1156, 4845, 19551, 76912, 297275, 1134705, 4292145, ... %p A259475 F:= proc(n) option remember; %p A259475 `if`(n<2, 1, expand(F(n-1)-t*F(n-2))) %p A259475 end: %p A259475 A:= (n, k)-> coeff(series(1/F(n+1), t, k+1), t, k): %p A259475 seq(seq(A(d-k, k), k=0..d), d=0..12); # _Alois P. Heinz_, Jul 04 2015 %t A259475 F[n_] := F[n] = If[n<2, 1, Expand[F[n-1] - t*F[n-2]]]; A[n_, k_] := SeriesCoefficient[1/F[n+1], { t, 0, k}]; Table[A[d-k, k], {d, 0, 12}, {k, 0, d}] // Flatten (* _Jean-François Alcover_, Feb 17 2016, after _Alois P. Heinz_ *) %o A259475 (SageMath) %o A259475 @cached_function %o A259475 def F(n, k): %o A259475 if k < 0: return 0 %o A259475 if k == 0: return 1 %o A259475 return sum((-1)^j*binomial(n-1-j,j+1)*F(n,k-2-2*j) for j in (0..(n-2)/2)) %o A259475 def A(n, k): return F(n+1, 2*k) %o A259475 print([A(n-k, k) for n in (0..11) for k in (0..n)]) # _Peter Luschny_, Aug 21 2019 %Y A259475 The initial rows of the array are A000007, A000012, A000079, A001906, A003432, A005021, A094811, A094256. %Y A259475 A(n,n) gives A274969. %Y A259475 Cf. A309896. %Y A259475 A188843 is a variant without the first two rows and the first column, and the antidiagonals read in opposite direction. %K A259475 nonn,tabl,easy,changed %O A259475 0,8 %A A259475 _N. J. A. Sloane_, Jul 03 2015 %E A259475 More terms from _Alois P. Heinz_, Jul 04 2015