This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259476 #28 Apr 15 2023 02:08:42 %S A259476 1,2,4,3,14,14,4,32,72,48,5,60,225,330,165,6,100,550,1320,1430,572,7, %T A259476 154,1155,4004,7007,6006,2002,8,224,2184,10192,25480,34944,24752,7072, %U A259476 9,312,3822,22932,76440,148512,167076,100776,25194,10,420,6300,47040,199920,514080,813960,775200,406980,90440,11,550,9900,89760,471240,1534896,3197700,4263600,3517470,1634380,326876 %N A259476 Cayley's triangle of V numbers; triangle V(n,k), n >= 4, n <= k <= 2*n-4, read by rows. %H A259476 A. Cayley, <a href="http://dx.doi.org/10.1112/plms/s1-22.1.237">On the partitions of a polygon</a>, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff. %F A259476 G.f.: (1-x*y*(1+2*y)-sqrt(1-2*x*y*(1+2*y)+x^2*y^2))^2/(4*y^4*(1+y)^2). - _Vladimir Kruchinin_, Jan 27 2022 %F A259476 T(n,m) = 2*C(m,n)*C(n-2,m-n+2)/(n-2), n>=4. - _Vladimir Kruchinin_, Jan 27 2022 %e A259476 Triangle begins: %e A259476 1; %e A259476 2, 4; %e A259476 3, 14, 14; %e A259476 4, 32, 72, 48; %e A259476 5, 60, 225, 330, 165; %e A259476 6, 100, 550, 1320, 1430, 572; %e A259476 ... %p A259476 V := proc(n,x) %p A259476 local X,g,i ; %p A259476 X := x^2/(1-x) ; %p A259476 g := X^n ; %p A259476 for i from 1 to n-2 do %p A259476 g := diff(g,x) ; %p A259476 end do; %p A259476 x^2*g*2*(n-1)/n! ; %p A259476 end proc; %p A259476 A259476 := proc(n,k) %p A259476 V(k-n+2,x) ; %p A259476 coeftayl(%,x=0,n+2) ; %p A259476 end proc: %p A259476 for n from 4 to 14 do %p A259476 for k from n to 2*n-4 do %p A259476 printf("%d,",A259476(n,k)) ; %p A259476 end do: %p A259476 printf("\n") ; %p A259476 end do: # _R. J. Mathar_, Jul 09 2015 %t A259476 T[n_, m_] := 2 Binomial[m, n] Binomial[n-2, m-n+2]/(n-2); %t A259476 Table[T[n, m], {n, 4, 14}, {m, n, 2n-4}] // Flatten (* _Jean-François Alcover_, Apr 15 2023, after _Vladimir Kruchinin_ *) %o A259476 (Maxima) %o A259476 T(n,m):=if n<4 then 0 else (2*binomial(m,n)*binomial(n-2,m-n+2))/(n-2); /* _Vladimir Kruchinin_, Jan 27 2022 */ %Y A259476 Diagonals give A002057, A002058, A002059, A002060. %Y A259476 Row sums give A065096 (with a different offset). %K A259476 nonn,tabl %O A259476 4,2 %A A259476 _N. J. A. Sloane_, Jul 03 2015