cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259477 Triangle of numbers where T(n,k) is the number of k-dimensional faces on a partially truncated n-dimensional simplex, 0 <= k <= n.

Original entry on oeis.org

1, 2, 1, 6, 6, 1, 12, 18, 8, 1, 20, 40, 30, 10, 1, 30, 75, 80, 45, 12, 1, 42, 126, 175, 140, 63, 14, 1, 56, 196, 336, 350, 224, 84, 16, 1, 72, 288, 588, 756, 630, 336, 108, 18, 1, 90, 405, 960, 1470, 1512, 1050, 480, 135, 20, 1, 110, 550, 1485, 2640, 3234, 2772, 1650, 660, 165, 22, 1
Offset: 0

Views

Author

Vincent J. Matsko, Jun 27 2015

Keywords

Examples

			Triangle begins:
1;
2, 1;
6, 6, 1;
12, 18, 8, 1;
20, 40, 30, 10, 1;
...
		

Programs

  • Mathematica
    Join @@ (CoefficientList[#,
         x] & /@ (Expand[
           D[((x + 1) (z + 1) + 1) Exp[z] (Exp[x z] - 1)/x + 1, {z, #}] /.
            z -> 0] & /@ Range[0, 10])) (* Vincent J. Matsko, Jun 30 2015 *)
    Flatten[Table[
      CoefficientList[
       D[(1/(1 - (x + 1)*y)^2 - (x + 1)/(1 - y)^2)/x +
           1/((1 - (x + 1) y)*(1 - y)) + 1, {y, k}]/Factorial[k] /. y -> 0,
       x], {k, 0, 10}]] (* Vincent J. Matsko, Jul 18 2015 *)
  • PARI
    T(n,k)=max(if(k,n+1-k,n)*binomial(n+1,k+1),1)
    for(n=0,10,for(k=0,n,print1(T(n,k)", "))) \\ Charles R Greathouse IV, Jun 29 2015

Formula

T(n,0) = n*(n+1), n > 0; T(n,k) = (n+1-k)*binomial(n+1,k+1), 1 <= k <= n.
E.g.f.: ((x+1)*(z+1)+1)*exp(z)*(exp(x*z)-1)/x + 1.
From Vincent J. Matsko, Jul 18 2015: (Start)
O.g.f.: (1/(1-(x+1)*y)^2-(x+1)/(1-y)^2)/x + 1/((1-(x+1)y)*(1-y))+1.
G.f. for rows (n > 0): (((x+1)^n-1)*(x+n+2))/x-n. (End)