This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259479 #25 Mar 02 2025 10:10:16 %S A259479 1,1,0,2,0,0,3,1,0,0,5,3,0,0,0,7,5,2,0,0,0,11,9,6,1,0,0,0,15,13,12,6, %T A259479 0,0,0,0,22,20,22,14,3,0,0,0,0,30,28,36,27,13,2,0,0,0,0,42,40,56,48, %U A259479 31,11,1,0,0,0,0,56,54,82,77,59,33,9,0,0,0,0,0,77,75,120,121,106,72,30,6,0,0,0,0,0 %N A259479 Skew diagrams, both connected or not. %C A259479 T(n,m) counts pairs of partitions lambda of n and mu of 0<=m<=n respectively, so that the Ferrers diagram of mu does not exceed that of lambda, and that the diagrams of lambda and mu do not contain equal rows or columns. %D A259479 I. G. MacDonald: "Symmetric functions and Hall polynomials", Oxford University Press, 1979. Page 4. %H A259479 Wouter Meeussen, <a href="/A259479/a259479.txt">Table n, m, T(n,m) for n= 1..27</a> %e A259479 T(6,2) = 6, the pairs of partitions are ((4,2)/(2)), ((3,3)/(2)), ((3,2,1)/(2)), ((3,2,1)/(1,1)), ((2,2,2)/(1,1)) and ((2,2,1,1)/(1,1)) %e A259479 and the diagrams are: %e A259479 x x 0 0 , x x 0 , x x 0 , x 0 0 , x 0 , x 0 %e A259479 0 0 0 0 0 0 0 x 0 x 0 x 0 %e A259479 0 0 0 0 0 %e A259479 0 %e A259479 Triangle begins: %e A259479 k=0 1 2 3 4 5 6 %e A259479 n=0; 1 %e A259479 n=1; 1 0 %e A259479 n=2; 2 0 0 %e A259479 n=3; 3 1 0 0 %e A259479 n=4; 5 3 0 0 0 %e A259479 n=5; 7 5 2 0 0 0 %e A259479 n=6; 11 9 6 1 0 0 0 %t A259479 majorsweak[left_List, right_List]:=Block[{le1=Length[left], le2=Length[right]}, If[le2>le1||Min[Sign[left-PadRight[right, le1]]]<0, False, True]]; %t A259479 redu1[\[Lambda]_,\[Mu]_]/;majorsweak[\[Lambda],\[Mu]]:=Delete[#,List/@DeleteCases[Table[i Boole[\[Lambda][[i]]==\[Mu][[i]]],{i,Length[\[Mu]]}],0]]&/@{\[Lambda],\[Mu]}; %t A259479 redu[\[Lambda]_,\[Mu]_]/;majorsweak[\[Lambda],\[Mu]]:=TransposePartition/@Apply[redu1,TransposePartition/@redu1[\[Lambda],\[Mu]]]; %t A259479 Table[Sum[Boole[majorsweak[\[Lambda],\[Mu]]&&redu[\[Lambda],\[Mu]]=={\[Lambda],\[Mu]}],{\[Lambda],Partitions[n]},{\[Mu],Partitions[k]}],{n,0,12},{k,0,n}]; %Y A259479 Cf. A259478, A259480, A259481, A161492, A227309, A006958. %K A259479 nonn,tabl %O A259479 0,4 %A A259479 _Wouter Meeussen_, Jun 28 2015