This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259480 #27 Mar 02 2025 10:10:12 %S A259480 0,1,0,2,0,0,3,0,0,0,5,1,0,0,0,7,2,0,0,0,0,11,5,2,0,0,0,0,15,8,4,0,0, %T A259480 0,0,0,22,14,10,3,0,0,0,0,0,30,21,18,7,1,0,0,0,0,0,42,32,32,17,6,0,0, %U A259480 0,0,0,0,56,45,50,31,15,2,0,0,0,0,0,0,77,65,80,58,36,11,2,0,0,0,0,0,0 %N A259480 T(n,m) counts connected skew Ferrers diagrams of shape lambda/mu with lambda and mu partitions of n and m respectively (0<=m<=n). %C A259480 In contrast to A161492, which counts the same items by area and number of columns, this sequence appears to have no known generating function. %C A259480 The diagonals T(n,n-k) count connected skew diagrams with weight k: %C A259480 1; 2; 3,1; 5,2,2; 7,5,4,3,1; 11,8,10,7,6,2,2; %C A259480 Their sums equal A006958. %D A259480 I. G. MacDonald: "Symmetric functions and Hall polynomials"; Oxford University Press, 1979. Page 4. %H A259480 Wouter Meeussen, <a href="/A259480/a259480.txt">Table n,m, T(n,m) for n= 1..27</a> %e A259480 T(7,2) = 4, the pairs of partitions are ((4,3)/(2)), ((3,3,1)/(2)), ((3,2,2)/(1,1)) and ((2,2,2,1)/(1,1)); %e A259480 The diagrams are: %e A259480 x x 0 0 , x x 0 , x 0 0 , x 0 %e A259480 0 0 0 0 0 0 x 0 x 0 %e A259480 0 0 0 0 0 %e A259480 0 %e A259480 Triangle begins: %e A259480 k=0 1 2 3 4 5 6 7 %e A259480 n=0; 0 %e A259480 n=1; 1 0 %e A259480 n=2; 2 0 0 %e A259480 n=3; 3 0 0 0 %e A259480 n=4; 5 1 0 0 0 %e A259480 n=5; 7 2 0 0 0 0 %e A259480 n=6; 11 5 2 0 0 0 0 %e A259480 n=7; 15 8 4 0 0 0 0 0 %t A259480 (* see A259479 *) factor[\[Lambda]_,\[Mu]_]/;majorsweak[\[Lambda],\[Mu]]:=Block[{a1,a2,a3},a1=Apply[Join,Table[{i,j},{i,Length[\[Lambda]]},{j,\[Lambda][[i]],\[Lambda][[Min[i+1,Length[\[Lambda]]]]],-1}]]; %t A259480 a2=Map[{First[#],First[#]>Length[\[Mu]]||\[Mu][[First[#]]]<#[[2]]}&,a1];a3=Map[First,DeleteCases[SplitBy[a2,MatchQ[#,{_,False}]&],{{_,False}}],{2}]; %t A259480 Flatten[redu[Part[\[Lambda],#], Part[PadRight[\[Mu],Length[\[Lambda]],0],#]/. 0->Sequence[]]&/@Map[Union,a3],1]]; %t A259480 Table[Sum[Boole[majorsweak[\[Lambda],\[Mu]]&&redu[\[Lambda],\[Mu]]==factor[\[Lambda],\[Mu]]=={\[Lambda],\[Mu]}],{\[Lambda],Partitions[n]},{\[Mu],Partitions[k]}],{n,0,12},{k,0,n}] %Y A259480 Cf. A259478, A259479, A259481, A161492, A227309, A006958. %K A259480 nonn,tabl %O A259480 0,4 %A A259480 _Wouter Meeussen_, Jul 01 2015