This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259491 #11 Feb 16 2025 08:33:26 %S A259491 1,-4,0,16,-16,8,0,-96,112,44,0,176,-448,-88,0,-32,1136,-200,0,-176, %T A259491 -2016,384,0,224,3136,484,0,-608,-5504,-792,0,640,9328,-704,0,192, %U A259491 -12112,648,0,352,14112,792,0,-208,-21312,-88,0,-2112,31808,-932,0,800 %N A259491 Expansion of (eta(q)^2 * eta(q^2) * eta(q^4)^3 / eta(q^8)^2)^2 in powers of q. %C A259491 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %H A259491 G. C. Greubel, <a href="/A259491/b259491.txt">Table of n, a(n) for n = 0..1000</a> %H A259491 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A259491 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %F A259491 Expansion of (phi(q) * phi(q^2) * phi(-q)^2)^2 in powers of q where phi() is a Ramanujan theta function. %F A259491 Euler transform of period 8 sequence [ -4, -6, -4, -12, -4, -6, -4, -8, ...]. %F A259491 G.f.: Product_{k>0} ((1 - x^k)^4 * (1 + x^k)^2 * (1 + x^(2*k)) / (1 + x^(4*k))^2)^2. %F A259491 a(2*n + 1) = -4 * A030211(n). a(4*n) = A035016(n). a(4*n + 2) = 0. %F A259491 Convolution square of A131999. %e A259491 G.f. = 1 - 4*q + 16*q^3 - 16*q^4 + 8*q^5 - 96*q^7 + 112*q^8 + 44*q^9 + ... %t A259491 a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^2 QPochhammer[ q^2] QPochhammer[ q^4]^3 / QPochhammer[ q^8]^2)^2, {q, 0, n}]; %t A259491 a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] EllipticTheta[ 4, 0, q]^2)^2, {q, 0, n}]; %t A259491 a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^2] EllipticTheta[ 4, 0, q^4]^2)^2, {q, 0, n}]; %o A259491 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^2 + A) * eta(x^4 + A)^3 / eta(x^8 + A)^2)^2, n))}; %o A259491 (Magma) A := Basis( ModularForms( Gamma1(8), 4), 52); A[1] - 4*A[2] + 16*A[4] - 16*A[5] + 8*A[6] - 96*A[8] + 112*A[9]; %Y A259491 Cf. A030211, A035016, A131999. %K A259491 sign %O A259491 0,2 %A A259491 _Michael Somos_, Jun 28 2015