cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259492 Least positive integer k such that prime(k)-k, prime(k)+k, prime(k*n)-k*n, prime(k*n)+k*n, prime(k)+k*n and prime(k*n)+k are all prime.

Original entry on oeis.org

4, 48852, 6, 27330, 89814, 13080, 9570, 44592, 6762, 28560, 1560, 8580, 2958, 672, 9816, 6300, 40050, 53580, 3354, 858, 4530, 100650, 182520, 49740, 48660, 25296, 66990, 87120, 43680, 6840, 52122, 2970, 22770, 15888, 34704, 406350, 67890, 99630, 92490, 83064, 28614, 8580, 32070, 42, 50442, 38676, 818202, 30450, 47880, 4620
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 28 2015

Keywords

Comments

Conjecture: Any positive rational number r can be written as m/n with prime(m)-m, prime(m)+m, prime(n)-n, prime(n)+n, prime(m)+n and m+prime(n) all prime.

Examples

			a(3) = 6 since prime(6)-6 = 7, prime(6)+6 = 19, prime(6*3)-6*3 = 43, prime(6*3)+6*3 = 79, prime(6)+6*3 = 31 and prime(6*3)+6 = 67 are all prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28-Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    PQ[k_]:=PrimeQ[Prime[k]-k]&&PrimeQ[Prime[k]+k]
    QQ[m_,n_]:=PQ[m]&&PQ[n]&&PrimeQ[Prime[m]+n]&&PrimeQ[m+Prime[n]]
    Do[k=0;Label[bb];k=k+1;If[QQ[k,n*k], Goto[aa], Goto[bb]]; Label[aa]; Print[n, " ", k];Continue,{n,1,50}]