cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259525 First differences of A007318, when Pascal's triangle is seen as flattened list.

This page as a plain text file.
%I A259525 #20 Apr 25 2024 13:45:11
%S A259525 0,0,0,1,-1,0,2,0,-2,0,3,2,-2,-3,0,4,5,0,-5,-4,0,5,9,5,-5,-9,-5,0,6,
%T A259525 14,14,0,-14,-14,-6,0,7,20,28,14,-14,-28,-20,-7,0,8,27,48,42,0,-42,
%U A259525 -48,-27,-8,0,9,35,75,90,42,-42,-90,-75,-35,-9,0,10,44,110
%N A259525 First differences of A007318, when Pascal's triangle is seen as flattened list.
%C A259525 A214292 gives first differences per row in Pascal's triangle.
%H A259525 Reinhard Zumkeller, <a href="/A259525/b259525.txt">Table of n, a(n) for n = 0..10000</a>
%H A259525 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>
%F A259525 From _G. C. Greubel_, Apr 25 2024: (Start)
%F A259525 If viewed as a triangle then:
%F A259525 T(n, k) = binomial(n, k+1) - binomial(n, k), with T(n, n) = 0.
%F A259525 T(n, n-k) = - T(n, k), for 0 <= k < n.
%F A259525 T(2*n, n) = [n=0] - A000108(n).
%F A259525 Sum_{k=0..n} T(n, k) = 0 (row sums).
%F A259525 Sum_{k=0..floor(n/2)} T(n, k) = A047171(n).
%F A259525 Sum_{k=0..n} (-1)^k*T(n, k) = A021499(n).
%F A259525 Sum_{k=0..floor(n/2)} T(n-k, k) = A074331(n-1). (End)
%t A259525 Table[If[k==n, 0, ((n-2*k-1)/(n-k))*Binomial[n,k+1]], {n,0,12}, {k,0, n}]//Flatten (* _G. C. Greubel_, Apr 25 2024 *)
%o A259525 (Haskell)
%o A259525 a259525 n = a259525_list !! n
%o A259525 a259525_list = zipWith (-) (tail pascal) pascal
%o A259525                            where pascal = concat a007318_tabl
%o A259525 (Magma)
%o A259525 [k eq n select 0 else (n-2*k-1)*Binomial(n,k+1)/(n-k): k in [0..n], n in [0..14]]; // _G. C. Greubel_, Apr 25 2024
%o A259525 (SageMath)
%o A259525 flatten([[binomial(n,k+1) -binomial(n,k) +int(k==n) for k in range(n+1)] for n in range(15)]) # _G. C. Greubel_, Apr 25 2024
%Y A259525 Cf. A007318, A014473, A163866, A214292.
%Y A259525 Cf. A000108, A021499, A047171, A074331.
%K A259525 sign
%O A259525 0,7
%A A259525 _Reinhard Zumkeller_, Jul 18 2015