This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259527 #25 Mar 24 2017 00:47:58 %S A259527 1,2,2,1,2,2,2,2,1,2,8,2,16,2,2,1,64,2,128,4,2,4,512,2,1,4,1,2,8192,2, %T A259527 8192,4,2,16,2,1,65536,64,4,2,524288,8,1048576,4,4,128,8388608,2,1,1, %U A259527 8,2,67108864,4,2,2,4,256,536870912,2,2147483648,2048,2,1,1 %N A259527 a(n) gives the number of sequences n = b_1 < b_2 < ... < b_t = A006255(n) such that b_1*b_2*...*b_t is a perfect square. %C A259527 All terms are powers of 2. %H A259527 Peter Kagey, <a href="/A259527/b259527.txt">Table of n, a(n) for n = 1..1000</a> %e A259527 For a(20)=4 the solutions are: %e A259527 s_0 = {20,24,30} with prod(s_0) = 120^2; %e A259527 s_1 = {20,24,25,30} with prod(s_1) = 600^2; %e A259527 s_2 = {20,21,24,27,28,30} with prod(s_2) = 15120^2; %e A259527 s_3 = {20,21,24,25,27,28,30} with prod(s_3) = 75600^2. %Y A259527 Cf. A006255, A260510. %K A259527 nonn %O A259527 1,2 %A A259527 _Peter Kagey_, Jun 29 2015 %E A259527 More terms from _Alois P. Heinz_, Jul 16 2015