A259536 Numbers n such that sigma(n) - n = Sum_{k|n, k < n} sigma*(k), where sigma(n) is the sum of the divisors of n and sigma*(k) is the sum of the anti-divisors of k.
14, 20, 42, 45, 52, 55, 121, 377, 451, 4331, 9211, 18042, 52093, 58743, 112853, 143498, 170322, 182293, 226118, 289811, 298489, 394067, 400831, 456745, 507678, 541362, 769667, 929582, 1132069, 1150595, 1218361, 1230403, 1262507, 1431109, 1516082, 1875155
Offset: 1
Keywords
Examples
Aliquot parts of 14 are 1, 2, 7. Anti-divisors of 7 are [2, 3, 5] while 1 and 2 have no anti-divisors. Finally 1 + 2 + 7 = 2 + 3 + 5 = 10. Aliquot parts of 20 are 1, 2, 4, 5, 10. Anti-divisors: for 4 is [3], for 5 are [2, 3], for 10 are [3, 4, 7] while 1 and 2 have no anti-divisors. Finally 1 + 2 + 4 + 5 + 10 = 3 + 2 + 3 + 3 + 4 + 7 = 22.
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,i,j,k,n; for n from 3 to q do a:=sort([op(divisors(n))]); b:=0; for k from 2 to nops(a)-1 do i:=0; j:=a[k]; while j mod 2 <> 1 do i:=i+1; j:=j/2; od; b:=b+sigma(2*a[k]+1)+sigma(2*a[k]-1)+sigma(a[k]/2^i)*2^(i+1)-6*a[k]-2; od; if sigma(n)-n=b then print(n); fi; od; end: P(10^9);