cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259540 Least positive integer k such that k and k*n are terms of A259539.

Original entry on oeis.org

60, 326940, 728700, 115020, 375258, 70920, 33150, 297990, 2340, 72870, 858, 1416210, 284130, 78978, 91368, 9438, 5547000, 767760, 1182918, 30468, 485208, 60, 7908810, 916188, 21522, 823968, 87720, 390210, 3252, 72870, 7878, 1823010, 1179990, 98010, 3462, 7878, 280590, 6870, 60, 434460
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 30 2015

Keywords

Comments

Conjecture: Any positive rational number r can be written as m/n with m and n terms of A259539.
For example, 4/5 = 11673840/14592300 with 11673840 and 14592300 terms of A259539.

Examples

			a(22) = 60 since 60 and 60*22 = 1320 are terms of A259539. In fact, 60-1 = 59, 60+1 = 61, prime(60)+2 = 283, 1320-1 = 1319, 1320+1 = 1321 and prime(1320)+2 = 10861 are all prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    PQ[k_]:=PrimeQ[Prime[k]+2]&&PrimeQ[Prime[Prime[k]+1]+2]
    QQ[n_]:=PrimeQ[n-1]&&PrimeQ[n+1]&&PrimeQ[Prime[n]+2]
    Do[k=0;Label[bb];k=k+1;If[PQ[k]&&QQ[n*(Prime[k]+1)], Goto[aa], Goto[bb]]; Label[aa]; Print[n, " ", Prime[k]+1];Continue,{n, 1, 40}]