This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259560 #23 Jul 29 2015 05:47:46 %S A259560 11,23,29,47,53,59,67,79,83,89,103,107,131,137,139,149,167,173,179, %T A259560 191,223,227,229,233,239,263,269,277,283,293,311,317,347,349,359,367, %U A259560 373,383,389,431,439,461,467,479,499,503,509,523,557,563,569,587,593,607 %N A259560 Primes p such that p = 2kq + 1 for k a positive integer, q an odd prime and 2k <= q - 3. %C A259560 This sequence is associated with the conjecture in A245664 that p + q is prime-partitionable. %C A259560 There are 138438 values of p in the first 216816 primes, i.e., 63.85%, all of which are distinct. %H A259560 Christopher Hunt Gribble, <a href="/A259560/b259560.txt">Table of n, a(n) for n = 1..20000</a> %e A259560 The table lists values of n, q, 2k and p for 1 <= n <= 20. %e A259560 .n q 2k p (a(n)) %e A259560 .1 5 2 11 %e A259560 .2 11 2 23 %e A259560 .3 7 4 29 %e A259560 .4 23 2 47 %e A259560 .5 13 4 53 %e A259560 .6 29 2 59 %e A259560 .7 11 6 67 %e A259560 .8 13 6 79 %e A259560 .9 41 2 83 %e A259560 10 11 8 89 %e A259560 11 17 6 103 %e A259560 12 53 2 107 %e A259560 13 13 10 131 %e A259560 14 17 8 137 %e A259560 15 23 6 139 %e A259560 16 37 4 149 %e A259560 17 83 2 167 %e A259560 18 43 4 173 %e A259560 19 89 2 179 %e A259560 20 19 10 191 %p A259560 ppgen := proc (n) %p A259560 local i, j, k, nprimes, p1a, p1b, p1b_ind, pless, pless_idx, p1b_ind_num_0, p1b_ind_num_1; %p A259560 pless := {}; %p A259560 for i from 3 to n do %p A259560 if isprime(i) then %p A259560 pless := `union`(pless, {i}) %p A259560 end if %p A259560 end do; %p A259560 nprimes := numelems(pless); %p A259560 p1b_ind := Vector(nprimes); %p A259560 for j to nprimes do %p A259560 p1a := pless[j]; %p A259560 if (1/2)*pless[-1]+1/2 < p1a then %p A259560 break %p A259560 end if; %p A259560 for k to (1/2)*p1a-3/2 do %p A259560 p1b := 2*k*p1a+1; %p A259560 if member(p1b, pless, 'pless_idx') then %p A259560 p1b_ind[pless_idx] := 1 %p A259560 elif pless[-1] < p1b then %p A259560 break %p A259560 end if %p A259560 end do %p A259560 end do; %p A259560 p1b_ind_num_0 := 1; %p A259560 p1b_ind_num_1 := 0; %p A259560 for i to nprimes do %p A259560 if p1b_ind[i] = 0 then %p A259560 p1b_ind_num_0 := p1b_ind_num_0+1 %p A259560 else %p A259560 p1b_ind_num_1 := p1b_ind_num_1+1; %p A259560 fprintf(fop, "%d %d\n", p1b_ind_num_1, pless[i]) %p A259560 end if %p A259560 end do %p A259560 end proc; %p A259560 n := 376200; %p A259560 ppgen(n); %o A259560 (PARI) is(n)=my(f=factor(n\2)[,1]); for(i=1,#f, if(n\2/f[i]*2<=f[i]-3, return(isprime(n)))); 0 \\ _Charles R Greathouse IV_, Jul 15 2015 %Y A259560 Cf. A059756, A245664. %K A259560 nonn %O A259560 1,1 %A A259560 _Christopher Hunt Gribble_, Jun 30 2015