This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259569 #51 Jun 22 2024 16:03:34 %S A259569 1,2,1,6,6,1,12,24,14,1,20,60,70,30,1,30,120,210,180,62,1,42,210,490, %T A259569 630,434,126,1,56,336,980,1680,1736,1008,254,1,72,504,1764,3780,5208, %U A259569 4536,2286,510,1,90,720,2940,7560,13020,15120,11430,5100,1022,1,110,990,4620,13860,28644,41580,41910,28050,11242,2046,1 %N A259569 Triangle T(n,k) read by rows, where T(n,k) is the number of k-dimensional faces of the polytope that is the convex hull of all permutations of the list (0,1,...,1,2), where there are n - 1 ones, for n > 0. T(0,0) is 1. %C A259569 It appears that these integers, with sign changes, are also in A138106. %F A259569 T(n,n) = 1, n >= 0. %F A259569 T(n,n-1) = 2^(n+1)-2, n > 0. %F A259569 T(n,0) = n(n+1), n > 0. %F A259569 T(n,k) = (n+1)*T(n-1,k)/(n-k-1), 0 <= k < n-1, n >= 2. %F A259569 E.g.f.: ((2*x+1)*exp(z*(2*x+1)) - 2*(x+1)*exp(z*(x+1)) + x^2*exp(z*x)+exp(z))/x^2 %F A259569 Conjecture: Sum_{k=0..n-1} T(n,k)*x^(n-k-1) = x^(n+1) - 2(x+1)^(n+1) + (x+2)^(n+1). - _Kevin J. Gomez_, Jul 25 2017 %F A259569 T(n,n) = 1; T(n,k) = binomial(n+1,k+2)*(4*2^k - 2) for 0 <= k < n. - _Aadesh Tikhe_, May 25 2024 %e A259569 Triangle begins: %e A259569 1; %e A259569 2, 1; %e A259569 6, 6, 1; %e A259569 12, 24, 14, 1; %e A259569 20, 60, 70, 30, 1; %e A259569 ... %e A259569 Row 2 describes a regular hexagon. %e A259569 Row 3 describes the cuboctahedron. %p A259569 T:= (n, k)-> `if`(n=k, 1, binomial(n+1, k+2)*(4*2^k-2)): %p A259569 seq(seq(T(n,k), k=0..n), n=0..10); %t A259569 Join @@ (CoefficientList[#, %t A259569 x] & /@ (Expand[ %t A259569 D[((1 + 2 x) Exp[z (1 + 2 x)] - 2 (1 + x) Exp[z (1 + x)] + Exp[z] + %t A259569 x^2 Exp[z x])/x^2, {z, #}] /. z -> 0] & /@ Range[0, 10])) %Y A259569 Row sums give A101052(n+1). %Y A259569 Cf. A138106. %K A259569 nonn,tabl %O A259569 0,2 %A A259569 _Vincent J. Matsko_, Jun 30 2015