A259572 Reciprocity array of 0; rectangular, read by antidiagonals.
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 3, 2, 0, 0, 2, 3, 3, 2, 0, 0, 3, 4, 6, 4, 3, 0, 0, 3, 6, 6, 6, 6, 3, 0, 0, 4, 6, 8, 10, 8, 6, 4, 0, 0, 4, 7, 9, 10, 10, 9, 7, 4, 0, 0, 5, 9, 12, 12, 15, 12, 12, 9, 5, 0, 0, 5, 9, 12, 14, 15, 15, 14, 12, 9, 5, 0, 0, 6, 10
Offset: 1
Examples
Northwest corner: 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 4 4 5 0 1 3 3 4 6 6 7 9 9 0 2 3 6 6 8 9 12 12 14 0 2 4 6 10 10 12 14 16 20 0 3 6 8 10 15 15 18 21 23
References
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989, pages 90-94.
Links
- Clark Kimberling, Antidiagonals n=1..60, flattened
Programs
-
Mathematica
x = 0; s[m_, n_] := Sum[Floor[(n*k + x)/m], {k, 0, m - 1}]; TableForm[ Table[s[m, n], {m, 1, 15}, {n, 1, 15}]] (* array *) u = Table[s[n - k + 1, k], {n, 15}, {k, n, 1, -1}] // Flatten (* sequence *)
Formula
T(m,n) = Sum_{k=0..m-1} [(n*k+x)/m] = Sum_{k=0..n-1} [(m*k+x)/n], where x = 0 and [ ] = floor.
Note that if [x] = [y], then [(n*k+x)/m] = [(n*k+y)/m], so that the reciprocity arrays for x and y are identical in this case.
T(m,n) = (m*n - m - n + gcd(m,n))/2. - Witold Dlugosz, Apr 07 2021
Comments