A259575 Reciprocity array of 1; rectangular, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 4, 4, 3, 1, 1, 3, 5, 6, 5, 3, 1, 1, 4, 6, 7, 7, 6, 4, 1, 1, 4, 7, 8, 10, 8, 7, 4, 1, 1, 5, 8, 10, 11, 11, 10, 8, 5, 1, 1, 5, 9, 12, 13, 15, 13, 12, 9, 5, 1, 1, 6, 10, 13, 15, 16, 16, 15, 13, 10, 6, 1, 1, 6
Offset: 1
Examples
Northwest corner: 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 3 4 4 5 5 1 2 3 4 5 6 7 8 9 10 1 2 4 6 7 8 10 12 13 14 1 3 5 7 10 11 13 15 17 20 1 3 6 8 11 15 16 18 21 23 1 4 7 10 13 16 21 22 25 28
References
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989, pages 90-94.
Links
- Clark Kimberling, Antidiagonals n=1..60, flattened
Programs
-
Mathematica
x = 1; s[m_, n_] := Sum[Floor[(n*k + x)/m], {k, 0, m - 1}]; TableForm[ Table[s[m, n], {m, 1, 15}, {n, 1, 15}]] (* array *) Table[s[n - k + 1, k], {n, 15}, {k, n, 1, -1}] // Flatten (* sequence *)
Formula
T(m,n) = Sum_{k=0..m-1} [(n*k+x)/m] = Sum_{k=0..n-1} [(m*k+x)/n], where x = 1 and [ ] = floor.
Comments