cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259578 Reciprocity array of 2; rectangular, read by antidiagonals.

This page as a plain text file.
%I A259578 #15 Mar 02 2025 22:35:26
%S A259578 2,2,2,2,3,2,2,3,3,2,2,4,3,4,2,2,4,5,5,4,2,2,5,6,6,6,5,2,2,5,6,8,8,6,
%T A259578 5,2,2,6,8,10,10,10,8,6,2,2,6,9,11,12,12,11,9,6,2,2,7,9,12,14,15,14,
%U A259578 12,9,7,2,2,7,11,14,16,17,17,16,14,11,7,2,2,8
%N A259578 Reciprocity array of 2; rectangular, read by antidiagonals.
%C A259578 The "reciprocity law" that Sum_{k=0..m} [(n*k+x)/m] = Sum_{k=0..n} [(m*k+x)/n] where x is a real number and m and n are positive integers, is proved in Section 3.5 of Concrete Mathematics (see References). See A259572 for a guide to related sequences.
%D A259578 R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989, pages 90-94.
%H A259578 Clark Kimberling, <a href="/A259578/b259578.txt">Antidiagonals n=1..60, flattened</a>
%F A259578 T(m,n) = Sum_{k=0..m-1} [(n*k+x)/m] = Sum_{k=0..n-1} [(m*k+x)/n], where x = 2 and [ ] = floor. Note that if [x] = [y], then [(n*k+x)/m] = [(n*k+y)/m], so that the reciprocity arrays for x and y are identical.
%e A259578 Northwest corner:
%e A259578   2   2   2   2   2   2   2   2   2   2
%e A259578   2   3   3   4   4   5   5   6   6   7
%e A259578   2   3   3   5   6   6   8   9   9   11
%e A259578   2   4   5   6   8   10  11  12  14  16
%e A259578   2   4   6   8   10  12  14  16  18  20
%e A259578   2   5   6   10  12  15  17  20  21  25
%t A259578 x = 2; s[m_, n_] := Sum[Floor[(n*k + x)/m], {k, 0, m - 1}];
%t A259578 TableForm[ Table[s[m, n], {m, 1, 15}, {n, 1, 15}]]
%t A259578 u = Table[s[n - k + 1, k], {n, 15}, {k, n, 1, -1}] // Flatten
%Y A259578 Cf. A259572, A259579, A259580.
%K A259578 nonn,easy,tabl
%O A259578 1,1
%A A259578 _Clark Kimberling_, Jul 17 2015