A259581 Reciprocity array of 3; rectangular, read by antidiagonals.
3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 6, 4, 3, 3, 5, 6, 6, 5, 3, 3, 5, 7, 6, 7, 5, 3, 3, 6, 9, 9, 9, 9, 6, 3, 3, 6, 9, 10, 10, 10, 9, 6, 3, 3, 7, 10, 12, 13, 13, 12, 10, 7, 3, 3, 7, 12, 12, 15, 15, 15, 12, 12, 7, 3, 3, 8, 12, 15, 17, 18, 18, 17, 15, 12, 8, 3
Offset: 1
Examples
Northwest corner: 3 3 3 3 3 3 3 3 3 3 3 3 4 4 5 5 6 6 7 7 3 4 6 6 7 9 9 10 12 12 3 4 6 6 9 10 12 12 15 16 3 5 7 9 10 13 15 17 19 20 3 5 9 10 13 15 18 20 24 25
References
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989, pages 90-94.
Links
- Clark Kimberling, Antidiagonals n=1..60, flattened
Programs
-
Mathematica
x = 3; s[m_, n_] := Sum[Floor[(n*k + x)/m], {k, 0, m - 1}]; TableForm[ Table[s[m, n], {m, 1, 15}, {n, 1, 15}]] (* array *) u = Table[s[n - k + 1, k], {n, 15}, {k, n, 1, -1}] // Flatten (* sequence *)
Formula
T(m,n) = Sum_{k=0..m-1} [(n*k+x)/m] = Sum_{k=0..n-1} [(m*k+x)/n], where x = 3 and [ ] = floor.
Note that if [x] = [y], then [(n*k+x)/m] = [(n*k+y)/m], so that the reciprocity arrays for x and y are identical.
Comments