This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259585 #16 Feb 13 2018 05:58:38 %S A259585 5,8,15,29,34,39,42,45,46,49,56,58,68,71,75,87,92,95,99,102,105,109, %T A259585 112,121,124,127,128,131,145,150,157,162,169,174,177,184,187,191,198, %U A259585 203,206,213,232,237,240,243,244,247,254,256,266,269,273,285,290,295 %N A259585 Numbers k such that [r[s*k]] - [s[r*k]] = -1, where r = sqrt(2), s=sqrt(3), and [ ] = floor. %C A259585 It is easy to prove that [r[s*k]] - [s[r*k]] ranges from -2 to 2. %H A259585 G. C. Greubel, <a href="/A259585/b259585.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Clark Kimberling) %e A259585 For k = 1 to 10, the values of [r[s*k]] - [s[r*k]] are 0, 1, 1, 0, -1, 1, 1, -1, 1, 0, so that a(1) = 5. %t A259585 z = 12000; r = Sqrt[2]; s = Sqrt[3]; %t A259585 u = Table[Floor[r*Floor[s*n]], {n, 1, z}]; %t A259585 v = Table[Floor[s*Floor[r*n]], {n, 1, z}]; %t A259585 Flatten[Position[u - v, -2]] (* A259584 *) %t A259585 Take[Flatten[Position[u - v, -1]], 100] (* A259585 *) %t A259585 Take[Flatten[Position[u - v, 0]], 100] (* A259725 *) %t A259585 Take[Flatten[Position[u - v, 1]], 100] (* A259587 *) %t A259585 Take[Flatten[Position[u - v, 2]], 100] (* A259586 *) %Y A259585 Cf. A259584, A259586, A259587, A259724, A259725, A259746. %K A259585 nonn,easy %O A259585 1,1 %A A259585 _Clark Kimberling_, Jul 15 2015