This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259590 #10 Feb 24 2023 15:54:55 %S A259590 1,8,113,219,33215,66317,99532,165849,364913,630294,1725033,3085153, %T A259590 27235615,78256779,131002976,209259755,471265707,1151791169, %U A259590 2774848045,6701487259,11439654911,574364584667,1709690779483,2851718461558,4561409241041,47337186164411 %N A259590 Denominators of the other-side convergents to Pi. %C A259590 Suppose that a positive irrational number r has continued fraction [a(0), a(1), ... ]. Define sequences p(i), q(i), P(i), Q(i) from the numerators and denominators of finite continued fractions as follows: %C A259590 p(i)/q(i) = [a(0), a(1), ... a(i)] and P(i)/Q(i) = [a(0), a(1), ..., a(i) + 1]. The fractions p(i)/q(i) are the convergents to r, and the fractions P(i)/Q(i) are introduced here as the "other-side convergents" to %C A259590 r, because p(2k)/q(2k) < r < P(2k)/Q(2k) and P(2k+1)/Q(2k+1) < r < p(2k+1)/q(2k+1), for k >= 0. %C A259590 Closeness of P(i)/Q(i) to r is indicated by |r - P(i)/Q(i)| < |p(i)/q(i) - P(i)/Q(i)| = 1/(q(i)Q(i)), for i >= 0. %e A259590 For r = Pi, the first 7 other-side convergents are 4, 25/8, 355/113, 688/219, 104348/33215, 208341/66317, 312689/99532. %e A259590 A comparison of convergents with other-side convergents: %e A259590 i p(i)/q(i) P(i)/Q(i) p(i)*Q(i) - P(i)*q(i) %e A259590 0 3/1 < Pi < 4/1 -1 %e A259590 1 22/7 > Pi > 25/8 1 %e A259590 2 333/106 < Pi < 355/113 -1 %t A259590 r=Pi;a[i_]:=Take[ContinuedFraction[r,35],i]; %t A259590 b[i_]:=ReplacePart[a[i],i->Last[a[i]]+1]; %t A259590 t=Table[FromContinuedFraction[b[i]],{i,1,35}] %t A259590 Denominator[t] (* A259590 *) %t A259590 Numerator[t] (* A259591 *) %Y A259590 Cf. A259591, A002485, A002486, A259588. %K A259590 nonn,easy,frac %O A259590 0,2 %A A259590 _Clark Kimberling_, Jul 17 2015