This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259591 #6 Jul 19 2015 11:04:46 %S A259591 4,25,355,688,104348,208341,312689,521030,1146408,1980127,5419351, %T A259591 9692294,85563208,245850922,411557987,657408909,1480524883,3618458675, %U A259591 8717442233,21053343141,35938735828,1804419559672,5371151992734,8958937768937,14330089761671 %N A259591 Numerators of the other-side convergents to Pi. %C A259591 Suppose that a positive irrational number r has continued fraction [a(0), a(1), ... ]. Define sequences p(i), q(i), P(i), Q(i) from the numerators and denominators of finite continued fractions as follows: %C A259591 p(i)/q(i) = [a(0), a(1), ... a(i)] and P(i)/Q(i) = [a(0), a(1), ..., a(i) + 1]. The fractions p(i)/q(i) are the convergents to r, and the fractions P(i)/Q(i) are introduced here as the "other-side convergents" to %C A259591 r, because p(2k)/q(2k) < r < P(2k)/Q(2k) and P(2k+1)/Q(2k+1) < r < p(2k+1)/q(2k+1), for k >= 0. %C A259591 Closeness of P(i)/Q(i) to r is indicated by |r - P(i)/Q(i)| < |p(i)/q(i) - P(i)/Q(i)| = 1/(q(i)Q(i)), for i >= 0. %F A259591 p(i)*Q(i) - P(i)*q(i) = (-1)^(i+1), for i >= 0, where a(i) = P(i). %e A259591 For r = Pi, the first 7 other-side convergents are 4, 25/8, 355/113, 688/219, 104348/33215, 208341/66317, 312689/99532. %e A259591 A comparison of convergents with other-side convergents: %e A259591 i p(i)/q(i) P(i)/Q(i) p(i)*Q(i) - P(i)*q(i) %e A259591 0 3/1 < Pi < 4/1 -1 %e A259591 1 22/7 > Pi > 25/8 1 %e A259591 2 333/106 < Pi < 355/113 -1 %t A259591 r = Pi; a[i_] := Take[ContinuedFraction[r, 35], i]; %t A259591 b[i_] := ReplacePart[a[i], i -> Last[a[i]] + 1]; %t A259591 t = Table[FromContinuedFraction[b[i]], {i, 1, 35}] %t A259591 u = Denominator[t] (*A259590*) %t A259591 v = Numerator[t] (*A259591*) %Y A259591 Cf. A259590, A002485, A002486. %K A259591 nonn,easy,frac %O A259591 0,1 %A A259591 _Clark Kimberling_, Jul 17 2015