cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259594 Denominators of the other-side convergents to sqrt(6).

This page as a plain text file.
%I A259594 #23 Dec 22 2023 12:11:03
%S A259594 1,3,11,29,109,287,1079,2841,10681,28123,105731,278389,1046629,
%T A259594 2755767,10360559,27279281,102558961,270037043,1015229051,2673091149,
%U A259594 10049731549,26460874447,99482086439,261935653321,984771132841,2592895658763,9748229241971
%N A259594 Denominators of the other-side convergents to sqrt(6).
%C A259594 Suppose that a positive irrational number r has continued fraction [a(0), a(1), ... ]. Define sequences p(i), q(i), P(i), Q(i) from the numerators and denominators of finite continued fractions as follows: p(i)/q(i) = [a(0), a(1), ... a(i)] and P(i)/Q(i) = [a(0), a(1), ..., a(i) + 1]. The fractions p(i)/q(i) are the convergents to r, and the fractions P(i)/Q(i) are introduced here as the "other-side convergents" to r, because p(2k)/q(2k) < r < P(2k)/Q(2k) and P(2k+1)/Q(2k+1) < r < p(2k+1)/q(2k+1), for k >= 0. Closeness of P(i)/Q(i) to r is indicated by
%C A259594 |r - P(i)/Q(i)| < |p(i)/q(i) - P(i)/Q(i)| = 1/(q(i)Q(i)), for i >= 0.
%H A259594 Colin Barker, <a href="/A259594/b259594.txt">Table of n, a(n) for n = 0..1000</a>
%H A259594 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,10,0,-1).
%F A259594 p(i)*Q(i) - P(i)*q(i) = (-1)^(i+1), for i >= 0, where a(i) = Q(i).
%F A259594 a(n) = 10*a(n-2) - a(n-4) for n>3. - _Colin Barker_, Jul 21 2015
%F A259594 G.f.: -(x+1)*(x^2-2*x-1) / (x^4-10*x^2+1). - _Colin Barker_, Jul 21 2015
%e A259594 For r = sqrt(6), the first 7 other-side convergents are 3, 7/3, 27/11, 71/29, 267/109, 703/287, 2643/1079. A comparison of convergents with other-side convergents:
%e A259594 i    p(i)/q(i)           P(i)/Q(i)    p(i)*Q(i)-P(i)*q(i)
%e A259594 0    2/1     < sqrt(6) <    3/1               -1
%e A259594 1    5/2     > sqrt(6) >    7/3                1
%e A259594 2    22/9    < sqrt(6) <   27/11              -1
%e A259594 3    49/20   > sqrt(6) >   71/29               1
%e A259594 4    218/89  < sqrt(6) <  267/109             -1
%e A259594 5    485/198 > sqrt(6) >  703/287              1
%t A259594 r = Sqrt[6]; a[i_] := Take[ContinuedFraction[r, 35], i];
%t A259594 b[i_] := ReplacePart[a[i], i -> Last[a[i]] + 1];
%t A259594 t = Table[FromContinuedFraction[b[i]], {i, 1, 35}]
%t A259594 u = Denominator[t]  (*A259594*)
%t A259594 v = Numerator[t]    (*A259595*)
%o A259594 (PARI) Vec(-(x+1)*(x^2-2*x-1)/(x^4-10*x^2+1) + O(x^50)) \\ _Colin Barker_, Jul 21 2015
%Y A259594 Cf. A041006, A041007, A259595.
%K A259594 nonn,easy,frac
%O A259594 0,2
%A A259594 _Clark Kimberling_, Jul 20 2015