cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259595 Numerators of the other-side convergents to sqrt(6).

This page as a plain text file.
%I A259595 #17 Mar 21 2023 10:03:38
%S A259595 3,7,27,71,267,703,2643,6959,26163,68887,258987,681911,2563707,
%T A259595 6750223,25378083,66820319,251217123,661452967,2486793147,6547709351,
%U A259595 24616714347,64815640543,243680350323,641608696079,2412186788883,6351271320247,23878187538507
%N A259595 Numerators of the other-side convergents to sqrt(6).
%C A259595 Suppose that a positive irrational number r has continued fraction [a(0), a(1), ... ]. Define sequences p(i), q(i), P(i), Q(i) from the numerators and denominators of finite continued fractions as follows:
%C A259595 p(i)/q(i) = [a(0), a(1), ... a(i)] and P(i)/Q(i) = [a(0), a(1), ..., a(i) + 1]. The fractions p(i)/q(i) are the convergents to r, and the fractions P(i)/Q(i) are introduced here as the "other-side convergents" to r, because p(2k)/q(2k) < r < P(2k)/Q(2k) and P(2k+1)/Q(2k+1) < r < p(2k+1)/q(2k+1), for k >= 0. Closeness of P(i)/Q(i) to r is indicated by
%C A259595 |r - P(i)/Q(i)| < |p(i)/q(i) - P(i)/Q(i)| = 1/(q(i)Q(i)), for i >= 0.
%H A259595 Colin Barker, <a href="/A259595/b259595.txt">Table of n, a(n) for n = 0..1000</a>
%H A259595 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,10,0,-1).
%F A259595 p(i)*Q(i) - P(i)*q(i) = (-1)^(i+1), for i >= 0, where a(i) = P(i).
%F A259595 a(n) = 10*a(n-2) - a(n-4) for n>3. - _Colin Barker_, Jul 21 2015
%F A259595 G.f.: (x^3-3*x^2+7*x+3) / (x^4-10*x^2+1). - _Colin Barker_, Jul 21 2015
%e A259595 For r = sqrt(6), the first 7 other-side convergents are 3, 7/3, 27/11, 71/29, 267/109, 703/287, 2643/1079. A comparison of convergents with other-side convergents:
%e A259595 i    p(i)/q(i)           P(i)/Q(i)    p(i)*Q(i)-P(i)*q(i)
%e A259595 0    2/1     < sqrt(6) <    3/1               -1
%e A259595 1    5/2     > sqrt(6) >    7/3                1
%e A259595 2    22/9    < sqrt(6) <   27/11              -1
%e A259595 3    49/20   > sqrt(6) >   71/29               1
%e A259595 4    218/89  < sqrt(6) <  267/109             -1
%e A259595 5    485/198 > sqrt(6) >  703/287              1
%t A259595 r = Sqrt[6]; a[i_] := Take[ContinuedFraction[r, 35], i];
%t A259595 b[i_] := ReplacePart[a[i], i -> Last[a[i]] + 1];
%t A259595 t = Table[FromContinuedFraction[b[i]], {i, 1, 35}]
%t A259595 u = Denominator[t]  (* A259594 *)
%t A259595 v = Numerator[t]    (* A259595 *)
%t A259595 LinearRecurrence[{0,10,0,-1},{3,7,27,71},30] (* _Harvey P. Dale_, Mar 21 2023 *)
%o A259595 (PARI) Vec((x^3-3*x^2+7*x+3)/(x^4-10*x^2+1) + O(x^50)) \\ _Colin Barker_, Jul 21 2015
%Y A259595 Cf. A041006, A041007, A259594.
%K A259595 nonn,easy,frac
%O A259595 0,1
%A A259595 _Clark Kimberling_, Jul 20 2015