This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259598 #14 Dec 02 2017 07:51:27 %S A259598 0,0,1,0,1,2,0,3,1,2,4,0,4,4,1,6,2,4,7,0,8,4,4,9,1,8,8,2,11,4,7,12,0, %T A259598 12,9,4,14,4,10,14,1,16,8,8,17,2,15,14,4,19,7,12,20,0,21,12,9,22,4,18, %U A259598 19,4,24,10,14,25,1,24,18,8,27,8,19,26,2,29,15 %N A259598 Number of representations of n as u(h) + v(k), where u = A000201 (lower Wythoff numbers), v = A001950 (upper Wythoff numbers), h>=1, k>=1. %C A259598 Three conjectures. The numbers that are not a sum u(h) + v(k) are (1,2,4,7,12, ...) = A000071 = -1 + Fibonacci numbers. The numbers that have exactly one such representation are (3, 5, 9, 15, 25, 41, ...) = A001595. The numbers that have exactly two such representations are (6, 10, 17, 28, 46, ...) = A001610. %F A259598 G.f.: [Sum_{n>=1} x^floor(n*phi)] * [Sum_{n>=1} x^floor(n*phi^2)], where phi = (1+sqrt(5))/2. - _Paul D. Hanna_, Dec 02 2017 %F A259598 G.f.: [Sum_{n>=1} x^A000201(n)] * [Sum_{n>=1} x^A001950(n)], where A000201 and A001950 are the lower and upper Wythoff sequences, respectively. - _Paul D. Hanna_, Dec 02 2017 %t A259598 r = GoldenRatio; z = 500; %t A259598 u[n_] := u[n] = Floor[n*r]; v[n_] := v[n] = Floor[n*r^2]; %t A259598 s[m_, n_] := s[m, n] = u[m] + v[n]; t = Table[s[m, n], {m, 1, z}, {n, 1, z}]; %t A259598 w = Flatten[Table[Count[Flatten[t], n], {n, 1, z/5}]] (* A259598 *) %o A259598 (PARI) {a(n) = my(phi = (1 + sqrt(5))/2, WL=1, WU=1); %o A259598 WL = sum(m=1, floor(n/phi)+1, x^floor(m*phi) +x*O(x^n)); %o A259598 WU = sum(m=1, floor(n/phi^2)+1, x^floor(m*phi^2) +x*O(x^n)); %o A259598 polcoeff(WL*WU, n)} %o A259598 for(n=1, 120, print1(a(n), ", ")) \\ _Paul D. Hanna_, Dec 02 2017 %Y A259598 Cf. A259556, A000071, A001595, A001610, A295540. %K A259598 nonn,easy %O A259598 1,6 %A A259598 _Clark Kimberling_, Jul 22 2015