This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259615 #58 Dec 30 2016 05:58:08 %S A259615 0,1,1,1,1,3,4,5,9,9,11,19,23,27,45,87,105,205,401,587,747,1121,1763, %T A259615 2145,4085,7965,15529,16545,32503,38323,49767,74305,146847,180069, %U A259615 210427,341745,650987,787109,917411 %N A259615 a(0)=0, a(1)=a(2)=a(3)=a(4)=1; thereafter, a(n) = Sum_{k=1..5} a(n-k-(a(n-k) mod 5)). %H A259615 Robert G. Wilson v, <a href="/A259615/b259615.txt">Table of n, a(n) for n = 0..1000</a> %o A259615 (Sage) def first(m): %o A259615 v=[0,1,1,1,1] %o A259615 for i in range(5,m+1): %o A259615 l=0 %o A259615 for s in range(1,5+1): %o A259615 l += v[i-s-v[i-s]%5] %o A259615 v.append(l) %o A259615 return v %o A259615 (Ruby) def first(m) %o A259615 v=[0,1,1,1,1] %o A259615 for i in 5..m-1 %o A259615 i2=0 %o A259615 for j in 1..5 %o A259615 r=i-j %o A259615 i2 += v[r-v[r]%5] %o A259615 end %o A259615 v << i2 %o A259615 end %o A259615 v %o A259615 end %Y A259615 Cf. A000322, A241154 (sequence obtained without mod 5 in formula). %K A259615 nonn %O A259615 0,6 %A A259615 _Anders Hellström_, Jun 30 2015