cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259616 Decimal expansion of J'_1(1), the first root of the derivative of the Bessel function J_1.

This page as a plain text file.
%I A259616 #8 Feb 16 2025 08:33:26
%S A259616 1,8,4,1,1,8,3,7,8,1,3,4,0,6,5,9,3,0,2,6,4,3,6,2,9,5,1,3,6,4,4,4,4,3,
%T A259616 3,2,2,4,3,6,1,2,7,0,3,9,0,9,6,8,1,9,2,6,4,3,5,0,4,6,7,7,4,2,9,2,4,2,
%U A259616 2,9,2,0,9,8,5,9,0,6,5,3,8,6,1,8,9,3,3,5,4,1,7,2,0,0,9,3,7,8,4,8,4,1,1,1,4
%N A259616 Decimal expansion of J'_1(1), the first root of the derivative of the Bessel function J_1.
%C A259616 Also root of the equation J_0(x) = J_2(x). - _Vaclav Kotesovec_, Jul 01 2015
%H A259616 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/BesselFunctionZeros.html">Bessel Function Zeros</a>
%e A259616 1.8411837813406593026436295136444433224361270390968192643504677429242292...
%t A259616 FindRoot[D[BesselJ[1, x], x] == 0, {x, 2}, WorkingPrecision -> 105] // Last // Last // RealDigits // First
%Y A259616 Cf. A115369 J'_0(1), A259617 J'_2(1), A259618 J'_3(1), A259619 J'_4(1), A259620 J'_5(1).
%K A259616 nonn,cons,easy
%O A259616 1,2
%A A259616 _Jean-François Alcover_, Jul 01 2015