cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259617 Decimal expansion of J'_2(1), the first root of the derivative of the Bessel function J_2.

This page as a plain text file.
%I A259617 #5 Feb 16 2025 08:33:26
%S A259617 3,0,5,4,2,3,6,9,2,8,2,2,7,1,4,0,3,2,2,7,5,5,9,3,2,0,9,1,1,4,8,5,6,0,
%T A259617 8,9,7,6,4,1,4,9,6,7,6,0,5,2,9,9,4,5,9,1,9,8,1,6,4,3,7,5,6,6,6,5,8,5,
%U A259617 4,5,1,7,6,6,1,2,9,1,9,4,5,6,9,7,4,7,0,8,0,5,6,3,0,5,7,7,5,5,5,0,9,4,1,2,6
%N A259617 Decimal expansion of J'_2(1), the first root of the derivative of the Bessel function J_2.
%H A259617 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/BesselFunctionZeros.html">Bessel Function Zeros</a>
%e A259617 3.054236928227140322755932091148560897641496760529945919816437566658545...
%t A259617 FindRoot[D[BesselJ[2, x], x] == 0, {x, 3}, WorkingPrecision -> 105] // Last // Last // RealDigits // First
%Y A259617 Cf. A115369 J'_0(1), A259616 J'_1(1), A259618 J'_3(1), A259619 J'_4(1), A259620 J'_5(1).
%K A259617 nonn,cons,easy
%O A259617 1,1
%A A259617 _Jean-François Alcover_, Jul 01 2015