cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259618 Decimal expansion of J'_3(1), the first root of the derivative of the Bessel function J_3.

This page as a plain text file.
%I A259618 #5 Feb 16 2025 08:33:26
%S A259618 4,2,0,1,1,8,8,9,4,1,2,1,0,5,2,8,4,9,6,1,8,7,8,5,5,2,9,7,4,5,6,7,1,2,
%T A259618 1,8,7,9,4,4,6,0,3,2,1,3,5,8,9,9,8,3,3,5,2,1,7,6,0,0,1,7,9,1,0,2,0,9,
%U A259618 5,8,4,0,5,0,3,1,9,3,3,5,1,6,1,1,1,7,3,5,0,2,6,5,4,2,4,7,2,1,8,9,0,7,6,9
%N A259618 Decimal expansion of J'_3(1), the first root of the derivative of the Bessel function J_3.
%H A259618 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/BesselFunctionZeros.html">Bessel Function Zeros</a>
%e A259618 4.2011889412105284961878552974567121879446032135899833521760017910209584...
%t A259618 FindRoot[D[BesselJ[3, x], x] == 0, {x, 4}, WorkingPrecision -> 104] // Last // Last // RealDigits // First
%Y A259618 Cf. A115369 J'_0(1), A259616 J'_1(1), A259617 J'_2(1), A259619 J'_4(1), A259620 J'_5(1).
%K A259618 nonn,cons,easy
%O A259618 1,1
%A A259618 _Jean-François Alcover_, Jul 01 2015