This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259629 #15 Aug 11 2015 15:30:44 %S A259629 10,15,42,70,105,330,462,770,1155,2730,4290,6006,10010,15015,39270, %T A259629 46410,72930,102102,170170,255255,570570,746130,881790,1385670, %U A259629 1939938,3233230,4849845,11741730,13123110,17160990,20281170,31870410,44618574,74364290,111546435,281291010 %N A259629 "Near Primorial" numbers. %C A259629 These are non-primorial (and nonprime) numbers missing just one prime factor relative to some primorial. The primorial numbers are given by A002110. %C A259629 A002110 also contains a comment that references these "near primorial" numbers in the context of graphs of tallies on the values of the differences among all distinct pairs of odd prime numbers. %H A259629 Chai Wah Wu, <a href="/A259629/b259629.txt">Table of n, a(n) for n = 1..1034</a> %e A259629 42 is included because it has prime factors 2, 3, and 7, but not 5. %e A259629 105 is included because it has prime factors 3, 5 and 7, but not 2. %t A259629 ResultList = {}; primo = 6; Do[primo = primo * Prime[n]; %t A259629 Do[AppendTo[ResultList, primo/Prime[m]], {m, 1, n - 1}], {n, 3, 15}] ; Sort[ResultList] %o A259629 (Python) %o A259629 from __future__ import division %o A259629 from sympy import nextprime %o A259629 A259629_list, plist, p = [10, 15], [10, 15], 5 %o A259629 for _ in range(50): %o A259629 r = nextprime(p) %o A259629 plist = [plist[-1]*2*r//p]+[d*r for d in plist] %o A259629 A259629_list.extend(plist) %o A259629 p = r # _Chai Wah Wu_, Aug 11 2015 %Y A259629 Cf. A002110. %K A259629 nonn %O A259629 1,1 %A A259629 _Richard R. Forberg_, Jul 01 2015