cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259645 Numbers m such that m^2 + 1, 3*m - 1 and m^2 + m + 41 are all prime.

This page as a plain text file.
%I A259645 #9 Apr 19 2025 18:04:05
%S A259645 1,2,4,6,10,14,16,20,24,36,66,90,94,116,120,134,150,156,160,206,240,
%T A259645 280,340,350,384,396,430,436,470,536,634,690,700,714,780,826,864,930,
%U A259645 946,960,1004,1124,1150,1176,1294,1316,1376,1410,1430,1494,1644,1674
%N A259645 Numbers m such that m^2 + 1, 3*m - 1 and m^2 + m + 41 are all prime.
%C A259645 This sequence is infinite if the generalized Dickson's conjecture holds.
%H A259645 Reinhard Zumkeller, <a href="/A259645/b259645.txt">Table of n, a(n) for n = 1..10000</a>
%H A259645 Wikipedia, <a href="http://en.wikipedia.org/wiki/Bunyakovsky_conjecture">Bunyakovsky conjecture</a>
%H A259645 Wikipedia, <a href="http://en.wikipedia.org/wiki/Dickson&#39;s_conjecture">Dickson's conjecture</a>
%e A259645 .            | (i, j, k) such that |        corresponding
%e A259645 .            | a(n) = A005574(i)   |        prime triples
%e A259645 .     |      |      = A087370(j)   |        let m = a(n):
%e A259645 .   n | a(n) |      = A056561(k)   |  (m^2+1, 3*m-1, m^2+m+41)
%e A259645 .  ---+------+---------------------+--------------------------
%e A259645 .   1 |    1 |     (1,  1,  2)     |        (2,   2,   43)
%e A259645 .   2 |    2 |     (2,  2,  3)     |        (5,   5,   47)
%e A259645 .   3 |    4 |     (3,  3,  5)     |       (17,  11,   61)
%e A259645 .   4 |    6 |     (4,  4,  7)     |       (37,  17,   83)
%e A259645 .   5 |   10 |     (5,  6, 11)     |      (101,  29,  151)
%e A259645 .   6 |   14 |     (6,  7, 13)     |      (197,  41,  251)
%e A259645 .   7 |   16 |     (7,  8, 15)     |      (257,  47,  313)
%e A259645 .   8 |   20 |     (8, 10, 21)     |      (401,  59,  461)
%e A259645 .   9 |   24 |     (9, 11, 25)     |      (597,  71,  641)
%e A259645 .  10 |   36 |    (11, 15, 37)     |     (1297, 107, 1373)
%e A259645 .  11 |   66 |    (15, 24, 61)     |     (4357, 197, 4463)
%e A259645 .  12 |   90 |    (18, 31, 79)     |     (8101, 269, 8231)  .
%t A259645 Select[Range[100], AllTrue[{#^2 + 1, 3 # - 1, #^2 + # + 41}, PrimeQ] &] (* _Robert Price_, Apr 19 2025 *)
%o A259645 (Haskell)
%o A259645 import Data.List.Ordered (isect)
%o A259645 a259645 n = a259645_list !! (n-1)
%o A259645 a259645_list = a005574_list `isect` a087370_list `isect` a056561_list
%Y A259645 Intersection of A005574, A087370 and A056561.
%K A259645 nonn
%O A259645 1,2
%A A259645 _Reinhard Zumkeller_, Jul 03 2015