cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259692 a(n) = Sum_{k=1..n-1} k^4*sigma(k)*sigma(n-k).

Original entry on oeis.org

0, 1, 51, 472, 2963, 10764, 36538, 95936, 222561, 502638, 974245, 1850784, 3234269, 5826680, 8857926, 15093248, 21945012, 35369541, 48358119, 74448464, 98697648, 148971972, 187495262, 276509952, 336495665, 488970662, 590163894, 823791168, 966018241, 1358404776
Offset: 1

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Comments

This was formerly A001477.

Crossrefs

Programs

  • Maple
    S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(4);
  • Mathematica
    a[n_]:=Sum[k^4*DivisorSigma[1,k]*DivisorSigma[1,n-k],{k,1,n-1}]; Table[a[n],{n,1,30}] (* Robert P. P. McKone, Sep 09 2023 *)
  • PARI
    a(n) = sum(k=1, n-1, k^4*sigma(k)*sigma(n-k)) \\ Colin Barker, Jul 16 2015

Formula

From Ridouane Oudra, Sep 09 2023: (Start)
a(n) = (n^4/24 - n^5/10)*sigma_1(n) + (5*n^4/84)*sigma_3(n) - (691/635040)*sigma_5(n) - (13/127008)*sigma_11(n) + (691/2520)*A279889(n).
a(n) = (n^4/24 - n^5/10)*sigma_1(n) - (691/1512000 - 5*n^4/84)*sigma_3(n) - (691/756000)*sigma_7(n) + (13/72000)*sigma_11(n) - (691/3150)*A279964(n).
a(n) = (-691/1596672 + n^4/24 - n^5/10)*sigma_1(n) + (5*n^4/84)*sigma_3(n) - (691/145152 - 691*n/120960)*sigma_9(n) - (65/38016)*sigma_11(n) + (691/6048)*f(n), where f(n) = Sum_{k=1..n-1} sigma_1(k)*sigma_9(n-k). (End)