cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259693 a(n) = Sum_{k=1..n-1} k^5*sigma(k)*sigma(n-k).

Original entry on oeis.org

0, 1, 99, 1264, 10475, 44820, 185626, 546560, 1454841, 3640950, 7868245, 16042176, 31040789, 59796968, 97525350, 177090560, 276689076, 467100189, 681356055, 1096023200, 1533162960, 2426544252, 3205401854, 4885539840, 6250705625, 9431254430, 11831779350
Offset: 1

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Comments

This was formerly A001478.

Crossrefs

Programs

  • Maple
    S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(5);
  • Mathematica
    S[n_, e_] := Sum[k^e * DivisorSigma[1, k] * DivisorSigma[1, n - k], {k, 1, n - 1}]
    f[e_] := Table[S[n, e], {n, 1, 27}];f[5] (* James C. McMahon, Dec 19 2023 *)
  • PARI
    a(n) = sum(k=1, n-1, k^5*sigma(k)*sigma(n-k)) \\ Colin Barker, Jul 16 2015

Formula

From Ridouane Oudra, Dec 08 2023: (Start)
a(n) = (n^5/24 - n^6/12)*sigma_1(n) + (5*n^5/112)*sigma_3(n) - (691*n/254016)*sigma_5(n) - (65*n/254016)*sigma_11(n) + (691*n/1008)*A279889(n).
a(n) = (n^5/24 - n^6/12)*sigma_1(n) + (5*n^5/112 - 691*n/604800)*sigma_3(n) - (691*n/302400)*sigma_7(n) + (13*n/28800)*sigma_11(n) - (691*n/1260)*A279964(n).
a(n) = (-3455*n/3193344 + n^5/24 - n^6/12)*sigma_1(n) + (5*n^5/112)*sigma_3(n) + (-3455*n/290304 + 691*n^2/48384)*sigma_9(n) - (325*n/76032)*sigma_11(n) + (3455*n/12096)*f(n), where f(n) = Sum_{k=1..n-1} sigma_1(k)*sigma_9(n-k). (End)