This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259731 #11 Apr 18 2019 14:42:03 %S A259731 1,6,1,3,9,2,1,181,5,459,5,1,2,18,3,421,35,14,183,3274,12,143,501,422, %T A259731 1407,1,170,9,55,153,2044,426,274,74,17,7,68,452,1084,1637,3,6,43, %U A259731 1141,1,8218,1860,211,42,1582,53,813,2,85,1,5714,61,1379,296,1457,57,1022,4,213,1331,137,525,37,167,1130 %N A259731 Least positive integer k such that prime(k*n)-1 is a square, or 0 if no such k exists. %C A259731 Conjecture: a(n) > 0 for all n > 0. %C A259731 This is stronger than the well-known conjecture that there are infinitely many primes of the form x^2+1 with x an integer. %D A259731 Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187. %H A259731 Zhi-Wei Sun, <a href="/A259731/b259731.txt">Table of n, a(n) for n = 1..2000</a> %H A259731 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1402.6641">Problems on combinatorial properties of primes</a>, arXiv:1402.6641 [math.NT], 2014. %e A259731 a(1) = 1 since prime(1*1)-1 = 2-1 = 1^2. %e A259731 a(2) = 6 since prime(6*2)-1 = 37-1 = 6^2. %t A259731 SQ[n_]:=IntegerQ[Sqrt[n]] %t A259731 Do[k=0;Label[bb];k=k+1;If[SQ[Prime[k*n]-1],Goto[aa],Goto[bb]];Label[aa];Print[n," ",k];Continue,{n,1,70}] %t A259731 lpi[n_]:=Module[{k=1},While[!IntegerQ[Sqrt[Prime[k*n]-1]],k++];k]; Array[ lpi,70] (* _Harvey P. Dale_, Apr 18 2019 *) %Y A259731 Cf. A000040, A000290, A002496, A076948, A238573, A259712. %K A259731 nonn %O A259731 1,2 %A A259731 _Zhi-Wei Sun_, Jul 04 2015