cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259733 The magic constants of most-perfect magic squares of order 8 composed of distinct prime numbers.

This page as a plain text file.
%I A259733 #23 Jan 24 2016 16:42:53
%S A259733 24024,26040,43680,44352,44520,44880
%N A259733 The magic constants of most-perfect magic squares of order 8 composed of distinct prime numbers.
%C A259733 A magic square of order n = 2k is most-perfect if the following two conditions hold: (i) every 2 X 2 subsquare (including wrap-around) sums to 2T; and (ii) any pair of elements at distance k along a diagonal or a skew diagonal sums to T, where T = S/k, S is the magic constant.
%C A259733 All most-perfect magic squares are pandiagonal.
%C A259733 All pandiagonal magic squares of order 4 are most-perfect, see A191533.
%C A259733 The magic constants of most-perfect magic squares of order 6 composed of distinct primes see A258755.
%C A259733 The minimal magic constant of most-perfect magic square of order 8 composed of distinct primes corresponds to a(1) = 24024, see A258082.
%C A259733 It seems that only the first term, or possibly the first two terms, have been proved to be correct. The other terms are conjectural (that is, there may be missing terms). - _N. J. A. Sloane_, Jul 28 2015
%H A259733 N. Makarova and others, <a href="http://dxdy.ru/post975769.html#p975769">Magic squares</a>, discussion at the scientific forum dxdy.ru (in Russian), Feb. 2015.
%H A259733 N. Makarova, <a href="http://www.primepuzzles.net/puzzles/puzz_671.htm">Puzzle 671: Most Perfect Magic Squares</a>, Prime Puzzles & Problems.
%H A259733 Natalia Makarova, <a href="/A259733/a259733.txt">Most-perfect magic squares of order 8</a>
%H A259733 Wikipedia, <a href="http://en.wikipedia.org/wiki/Most-perfect_magic_square">Most-perfect magic square</a>
%e A259733 a(2) = 26040 corresponds to the following most-perfect magic square by N. Makarova:
%e A259733     61 6229  661 5563 2087 4643 1487 5309
%e A259733   3719 3011 3119 3677 1693 4597 2293 3931
%e A259733   1777 4513 2377 3847 3803 2927 3203 3593
%e A259733   4139 2591 3539 3257 2113 4177 2713 3511
%e A259733   4423 1867 5023 1201 6449  281 5849  947
%e A259733   4817 1913 4217 2579 2791 3499 3391 2833
%e A259733   2707 3583 3307 2917 4733 1997 4133 2663
%e A259733   4397 2333 3797 2999 2371 3919 2971 3253
%e A259733 a(3) = 43680 corresponds to the following most-perfect magic square by S. Zorkin:
%e A259733     229 10457  859 9767  7393  3761  6763 4451
%e A259733    7841  3313 7211 4003   677 10009  1307 9319
%e A259733     953  9733 1583 9043  8117  3037  7487 3727
%e A259733    8623  2531 7993 3221  1459  9227  2089 8537
%e A259733    3527  7159 4157 6469 10691   463 10061 1153
%e A259733   10243   911 9613 1601  3079  7607  3709 6917
%e A259733    2803  7883 3433 7193  9967  1187  9337 1877
%e A259733    9461  1693 8831 2383  2297  8389  2927 7699
%Y A259733 Cf. A191533, A258082, A258755.
%K A259733 nonn,more
%O A259733 1,1
%A A259733 _Natalia Makarova_ and Sergey Zorkin, Jul 04 2015