This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259733 #23 Jan 24 2016 16:42:53 %S A259733 24024,26040,43680,44352,44520,44880 %N A259733 The magic constants of most-perfect magic squares of order 8 composed of distinct prime numbers. %C A259733 A magic square of order n = 2k is most-perfect if the following two conditions hold: (i) every 2 X 2 subsquare (including wrap-around) sums to 2T; and (ii) any pair of elements at distance k along a diagonal or a skew diagonal sums to T, where T = S/k, S is the magic constant. %C A259733 All most-perfect magic squares are pandiagonal. %C A259733 All pandiagonal magic squares of order 4 are most-perfect, see A191533. %C A259733 The magic constants of most-perfect magic squares of order 6 composed of distinct primes see A258755. %C A259733 The minimal magic constant of most-perfect magic square of order 8 composed of distinct primes corresponds to a(1) = 24024, see A258082. %C A259733 It seems that only the first term, or possibly the first two terms, have been proved to be correct. The other terms are conjectural (that is, there may be missing terms). - _N. J. A. Sloane_, Jul 28 2015 %H A259733 N. Makarova and others, <a href="http://dxdy.ru/post975769.html#p975769">Magic squares</a>, discussion at the scientific forum dxdy.ru (in Russian), Feb. 2015. %H A259733 N. Makarova, <a href="http://www.primepuzzles.net/puzzles/puzz_671.htm">Puzzle 671: Most Perfect Magic Squares</a>, Prime Puzzles & Problems. %H A259733 Natalia Makarova, <a href="/A259733/a259733.txt">Most-perfect magic squares of order 8</a> %H A259733 Wikipedia, <a href="http://en.wikipedia.org/wiki/Most-perfect_magic_square">Most-perfect magic square</a> %e A259733 a(2) = 26040 corresponds to the following most-perfect magic square by N. Makarova: %e A259733 61 6229 661 5563 2087 4643 1487 5309 %e A259733 3719 3011 3119 3677 1693 4597 2293 3931 %e A259733 1777 4513 2377 3847 3803 2927 3203 3593 %e A259733 4139 2591 3539 3257 2113 4177 2713 3511 %e A259733 4423 1867 5023 1201 6449 281 5849 947 %e A259733 4817 1913 4217 2579 2791 3499 3391 2833 %e A259733 2707 3583 3307 2917 4733 1997 4133 2663 %e A259733 4397 2333 3797 2999 2371 3919 2971 3253 %e A259733 a(3) = 43680 corresponds to the following most-perfect magic square by S. Zorkin: %e A259733 229 10457 859 9767 7393 3761 6763 4451 %e A259733 7841 3313 7211 4003 677 10009 1307 9319 %e A259733 953 9733 1583 9043 8117 3037 7487 3727 %e A259733 8623 2531 7993 3221 1459 9227 2089 8537 %e A259733 3527 7159 4157 6469 10691 463 10061 1153 %e A259733 10243 911 9613 1601 3079 7607 3709 6917 %e A259733 2803 7883 3433 7193 9967 1187 9337 1877 %e A259733 9461 1693 8831 2383 2297 8389 2927 7699 %Y A259733 Cf. A191533, A258082, A258755. %K A259733 nonn,more %O A259733 1,1 %A A259733 _Natalia Makarova_ and Sergey Zorkin, Jul 04 2015