cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259758 Squarefree semiprimes of the form (2*p - 3) * (3*p - 2), p prime.

This page as a plain text file.
%I A259758 #6 Jul 20 2022 12:53:30
%S A259758 21,91,209,589,851,2881,7739,10541,16171,26069,29329,75151,95129,
%T A259758 110839,165169,194219,216409,220991,264389,374749,411601,653069,
%U A259758 717949,829931,1108969,1119311,1171741,1269139,1416689,2059789,3161729,3374249,3428459,4924109
%N A259758 Squarefree semiprimes of the form (2*p - 3) * (3*p - 2), p prime.
%C A259758 a(n) = (2*A259730(n) - 3) * (3*A259730(n) - 2);
%C A259758 3431 = A033569(24) = (2*25-3)*(3*25-2) = 47*73 = A006881(946) is the smallest term in the intersection of A006881 and A033569 not belonging to this sequence.
%H A259758 Reinhard Zumkeller, <a href="/A259758/b259758.txt">Table of n, a(n) for n = 1..10000</a>
%F A259758 a(n) = 6*A259730(n)^2 - 13*A259730(n) + 6.
%e A259758 .    n | p = A259730(n) | 2*p - 3 | 3*p - 2 |   a(n)
%e A259758 .  ----+----------------+---------+---------+--------
%e A259758 .    1 |              3 |       3 |       7 |     21
%e A259758 .    2 |              5 |       7 |      13 |     91
%e A259758 .    3 |              7 |      11 |      19 |    209
%e A259758 .    4 |             11 |      19 |      31 |    589
%e A259758 .    5 |             13 |      23 |      37 |    851
%e A259758 .    6 |             23 |      43 |      67 |   2881
%e A259758 .    7 |             37 |      71 |     109 |   7739
%e A259758 .    8 |             43 |      83 |     127 |  10541
%e A259758 .    9 |             53 |     103 |     157 |  16171
%e A259758 .   10 |             67 |     131 |     199 |  26069
%e A259758 .   11 |             71 |     139 |     211 |  29329
%e A259758 .   12 |            113 |     223 |     337 |  75151  .
%t A259758 Select[Table[(2p-3)(3p-2),{p,Prime[Range[200]]}],PrimeOmega[#]==2&&SquareFreeQ[ #]&] (* _Harvey P. Dale_, Jul 20 2022 *)
%o A259758 (Haskell)
%o A259758 a259758 n = (2 * p - 3) * (3 * p - 2)  where p = a259730 n
%Y A259758 Cf. A259730, subsequence of A006881, subsequence of A033569.
%K A259758 nonn
%O A259758 1,1
%A A259758 _Reinhard Zumkeller_, Jul 05 2015