cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259763 Number of symmetric n X n (0,1)-matrices with pairwise distinct rows and columns.

This page as a plain text file.
%I A259763 #19 Jul 02 2022 16:09:13
%S A259763 1,2,6,44,716,24416,1680224,229468288,61820527104,32848197477760,
%T A259763 34502874046006912,71850629135663531776,297429744309497638961920,
%U A259763 2452504520881914016303901696,40340635076928240671195746599936,1324981038432182976845483456362661888,86953044949519288083916385603832568137728
%N A259763 Number of symmetric n X n (0,1)-matrices with pairwise distinct rows and columns.
%H A259763 G. C. Greubel, <a href="/A259763/b259763.txt">Table of n, a(n) for n = 0..80</a>
%H A259763 MathOverflow, <a href="http://mathoverflow.net/questions/210384/counting-matrices-of-special-types">Counting matrices of special types</a>, 2015.
%F A259763 a(n) = Sum_{k=0..n} Stirling1(n,k) * 2^(k*(k+1)/2).
%t A259763 Table[Sum[StirlingS1[n,k]*2^Binomial[k+1,2], {k,0,n}], {n,0,20}] (* _G. C. Greubel_, Nov 04 2018*)
%o A259763 (PARI) A259763(n) = sum(k=1,n, stirling(n,k,1) * 2^(k*(k+1)/2) );
%o A259763 (Magma) [(&+[StirlingFirst(n,k)*2^Binomial(k+1,2): k in [0..n]]): n in [0..20]]; // _G. C. Greubel_, Nov 04 2018
%Y A259763 Cf. A088310, A006024
%Y A259763 Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
%K A259763 nonn
%O A259763 0,2
%A A259763 _Max Alekseyev_, Jul 04 2015
%E A259763 a(0)=1 prepended by _Alois P. Heinz_, Jul 12 2015